
ht. J. Hear Muss Trrtnsfer. Vol. 8. pp. 529-556. Pergamon Press 1965. Printed in Great Britain 

ON THE THEORY OF CONDUCTIVE 

FINITE REGIONS WITH BOUNDARY 

SECOND KIND 

NURE~~NY.~L~ER 

HEAT TRANSFER IN 

CONDITIONS OF THE 

Ordnance Engineering Associates, Inc., Des Plaines, Illinois, U.S.A. 

(Received 10 August 1964 and in revised form 26 October 1964) 

Abstract-General expressions are derived for unsteady temperature distributions in finite regions of 
arbitrary geometry, under conditions of prescribed heat flux on all boundaries and with time-de- 
pendent heat sources and arbitrary initial conditions. The heat sources (or sinks) are distributed 
throughout the volume and can, as special cases, be surface, line or point sources. By introducing 
certain artificial additional heat source functions, corresponding pseudo-steady solutions are defined, 
by means of which the temperature fields are expressed in the form of uniformly convergent series 
solutions. The general method of solution is applied to a detailed study of a finite cylinder problem of 
very general nature, which has not been treated before. 

The present work complements and supplements a previous paper in which assumption is made of 
the existence of steady-state solutions when prescribed volume and surface source functions are 

independent of time. 

NOMENCLATURE 

boundary coefficient functions on SI; 
radius of cylinder; 
half length of cylinder; 
coefficient defined in equation (I 1); 
coefficient defined in equation (7) ; 
coefficient defined in equation (36); 
coefficient defined in equation (65.b); 
initial temperature distribution in R; 
initial temperature distribution in cylinder; 
source function on Si ; 
heat flux per unit time on surface z = -b of cylinder; 
heat flux per unit time on surface z = b of cylinder; 
heat flux per unit time on surface r = a of cylinder; 
Green’s function defined in equation (52); 
modified Bessel function of the first kind of order k and argument x; 
1, 2, - . ., 4; 
Bessel function of the first kind of order k and argument x; 
0, 1,2, * * *, 4; 
thermal conductivity of R; 
modified Bessel function of the second kind of order k and argument x; 
0, 1, 2, . . ., co; 
outward normal of Sl; 
point in R; 
internal heat source function per unit time per unit volume of R; 
internal heat source function per unit time per unit volume of cylinder; 
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Y, 
R 
f-9 

S, 
5, 
$1, 

TV, t>v 
T*(P, t>, 

Toj(P, t>, 

T,“,(P, t>> 

TO, t), 
TdP, t>, 
Tw(t>, 
W, P, z, t>, 

Tdr, p, z, t), 

To? (r, p, =, f), 

Took, z, t>, 

Took, P, t>, 

TOI@, z, t>, 

To&-, z, t), 

7’03(r, z, t), 

To3@, v, t>, 

T(r, t>, 

T(z, t>, 

Took, t>, 

TOl(Z, 0, 

Todz, t), 

Todr, t>, 

number of co-ordinate surfaces of R; 
homogeneous, stationary region in P-space; 
radial space co-ordinate in cylindrical polar co-ordinates; 
boundary of R; 
ith co-ordinate surface of R; 
point on Si; 
unsteady temperature distribution defined in equations (I), (2) and (3); 
unsteady temperature distribution defined in equations (1) (2’) and (3), 
with T(P, t) replaced by T*(P, t) in equations (1) and (3); 
pseudo-steady temperature distributions of order zero, defined in equu- 
tions (19) and (20); 
pseudo-steady temperature distributions of order zero defined in equation 
(5); 
unsteady temperature distribution defined in equation (24) or (25); 
unsteady temperature distribution defined in equation (28); 
average temperature of R at time t; 
unsteady temperature distribution defined in equations (29), (30) and 
(31); 
pseudo-steady temperature distribution defined in equations (39) (-lo), 
and (41), and given by equation (54); 
pseudo-steady temperature distribution defined in equations (56), (57) 
and (58), and given by equation (62) or (70); 
pseudo-steady temperature distribution defined in equations (73) (7-I) 
and (75) and given by equation (76) or (78); 
pseudo-steady temperature distribution defined in equations (Sl), (82) and 
(83), and given by equation (84); 
axisymmetric pseudo-steady temperature distribution given by equation 
(%.a); 
two-dimensional pseudo-steady temperature distribution given by 
equation (55.b); 
axisymmetric pseudo-steady temperature distribution given by equation 
(63.a) or (71.a); 
axisymmetric pseudo-steady temperature distribution given by equation 
(77.a) or (79.a); 
axisymmetric pseudo-steady temperature distribution given by equation 
(85.a); 
two-dimensional pseudo-steady temperature distribution given by 
equation (85.b) or (99); 
one-dimensional unsteady temperature distribution given by equation 

(86); 
one-dimensional unsteady temperature distribution given by equation 
(87) or (98); 
one-dimensional pseudo-steady temperature distribution given by equa- 
tion (55.c); 
one-dimensional pseudo-steady temperature distribution given by 
equation (63.b) or (71.b); 
one-dimensional pseudo-steady temperature distribution given by equa- 
tion (77.b) or (79.b); 
one-dimensional pseudo-steady temperature distribution given by equa- 
tion (85.~); 
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time variable; 
volume of R; 
axial co-ordinate in cylindrical polar co-ordinates; 
Kronecker delta; 
partial derivative with respect to time; 
unsteady temperature distributions defined by equation (26) or (27); 
thermal diffusivity of R; 
eigenvalues defined by equation (10) ; 
eigenvalues defined by equation (6); 
eigenvalues defined by equation (32) and given by equation (33); 
eigenvalues determined from equation (35); 
parameter and variable of integration with respect to time; 
eigenfunctions defined by equation (10); 
eigenfunctions defined by equation (6j; 
eigenfunctions defined by equation (32); 
angular space co-ordinate in cylindrical polar co-ordinates; 
temperature functions defined by equation (16) and by equation (37) for 
q = 3; 
gradient operator in P-space: 
Laplace operator in P-space; 

[2( )/W or [a( PI; 
finite cosine transform of { j(r, p?, z, t) defined as J { }(v, Q, z, f) 
cos k(p7 - 9’) dF ; 0 

finite cosine transform of { )(r, CT, z, t) defined as 1’ { }(r, ~JJ, z, t) cos (nrr/2) 
[ 1 -I- (z/b)] dz ; -5 

finite Hankel transform of { )(u, p, 1. t) defined as i { )(r, g, z, t) 
J&W) r dr. 0 

INTRODUCTIOS 

IN A RECENT PAPER [l] the author presented a general study of unsteady temperature distributions 
in finite regions of arbitrary geometry, under a wide variety of time-dependent boundary conditions 
and heat sources. The general solution was given in terms of a set of pseudo-steady temperature 
distributions and a uniformly convergent infinite series. It was remarked there that when all the 
boundaries of the finite region in question are simultaneously subjected to prescribed heat flux 
conditions, these pseudo-steady solutions do not exist (except in a trivial case of no practical sig- 
nificance) and therefore special attention must be devoted to the case of the boundary conditions of 
the second kind. It is the purpose of the present paper to present a study applicable to this important 
case of permanent interest to engineering science, and thus to complement and supplement the 
previous treatment given in [l]. 

STATJWEXT OF THE PROBLEM 

The unsteady temperature field in a stationary, homogeneous, isotropic region R, with thermal 
properties independent of temperature satisfies the heat-conduction equation 

V”- T(p, t) f _! Q(p t) = ! aT(p’ t, 
K ’ ~7’ P in R, t > 0. (1) 

Let the boundary surface S of R be composed of continuous co-ordinate surfaces St, CJ in number, in a 



532 NURETTlN Y. ijLCER 

conveniently chosen three-dimensional co-ordinate system. The boundary conditions of the second 
kind can be expressed as 

K v =fi(Si, t), P on St, t > 0, (2) 

and the initial condition is given by 

T(P, t) = F(P), P in R, t = 0. (3) 

For ease of reference and comparison, the solution of the general problem treated in [l] where (2) is 
replaced by 

u*(P, r) 
Ai -7&-- f B&i) T*(P, t) =fi(si, t), P on Si, t > 0, (2’1 

1 

is also presented here as follows: 

T*(P, t> = 2 T,*,(P, t) + 2 CG 4*,(P) exp (-whit) { ] 4*,(P) F(P) dV 
I=0 m-1 R I 

- 3 [ 1 C*,(P) T&(P, 0) dV f 3 exp (~h$ T) 1 4”,(P) p:j(P, T) dV dT] j, 
t (4.a) 

j=O R 0 

i 

where 

v” T&(P, t) + 2 Q(P, t) = 0, Pin R, 

V’ 4*,(P) + A*,? 4*,(P) = 0, P in R, 

a$* (P) 
Ml) ant -.!!L- + B&i) #k(P) = 0, P 011 si, 

and 
1 

c,: = s 
&(P) d V. 

R 

An alternative expression for T*(P, t) is given by 

9 00 

T*(P, t) = 
c 

qp, t) + 
c 

Ch 4:(P) exp (-KX~ t) IS $J*,W WI d v j=O m=1 R 

- i .! [s jf K &k(P) Q(P, o) dY + 2 J ‘$j+t, 01 d&] 
R 

1 t 

i=l .si 
9 -__ x *? 

s 
exP &A*,2 7) k 

[ s 
4;(P) &(P, 7) dV + Cs 4’ (Si) k h:z(si, 7) dSf 1 dT). 

m0 R i=l St 

(La) 

(Lb) 

@.a) 

(6.b) 

(7) 

(3.b) 

The temperature distributions T&(P, t) defined by the system (5) are called pseudo-steady solutions 
of order zero and satisfy the relations 

s 
+XP) T;o:,(P, t> dV = s2 [ GP) QP’, t> dK (8.4 

R “R 
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J 4;(P) TGj(P, t) d I/ = 4 
s 

d’,(Sl) 

x; 
Aj(sr) fi(sj, t) dSj> i f 0. 

R 31 

(8.b) 

Under the restriction that B&i) is not to vanish for all i simultaneously, the expressions (4) constitute 
the solutions to the system of(l), (2’) and (3), and T*(P, t) satisfies the relation 

; 1 4”,(P) T*(P, t) dI’ = Kx$ J +;(P> [ 2 T;,tP, t) - T*(P, t) 1 dV. (9) 

R R j=O 

In the case where B&i) 3 0 for all i simultaneously, namely, the case of boundary conditions of the 
second kind, the system of(l), (2’) and (3) reduces to the system of(l), (2) and (3). It was noted in 
[l] that in this case the pseudo-steady solutions Tl,(P, t) defined by the system (5) do not exist except 
when 

601 Q(P,t>dy+ K6ij $$dSi = 0, J J 1 
R si 

i.e. when the net rate of total heat transfer throughout the volume is zero. Therefore, for arbitrary 
source functions, Q(P, t) andf& t) the solution T(P, t) to the system of(l), (2) and (3) cannot be 
obtained from the solution T*(P, t) to the system of(l), (2’) and (3) as expressed by (4). 

SOLUTION OF THE PROBLEiM 

For the problem at hand the appropriate eigenvalue problem is the one defined by 

V’ &(P) + hi #m(P) = 0, P in R, (1O.a) 

wn(P) -= 
Erf[ 

0, POnSi, (lO.b) 

and the normalizing coefficient Cm is given by 

1 
c, = 4;(P) dV. J 

R 

(11) 
It was shown in [I] that the eigenvalues A, and the eigenfunctions I&(P) defined by the system (10) 
satisfy the relation 

A; = Cm j [V &n(P>12 d?‘. (12) 
R 

It follows from (12), that ho = 0 is also an eigenvalue of (10) corresponding to the eigenfunction 
$0 = constant # 0 (m = 0). 

In terms of the eigenfunctions d,(P) the following expansion can be written: 

T(P, t) = i Toj(P, t) + : C, &,(P) J &z(P) tT(P, r) - 2 Z-o@, t>l dV, (13) 
I=0 m=O R j=o 

where Toj(P, r) are the pseudo-steady temperature distributions in the case of the boundary con- 
ditions of the second kind, and are to be defined presently. From the system of(l), (2), (3) and the 
system (lo), it can be shown that for A, = ho = 0, 

; T(P,t)dV=; 
s 

[J QU’J> dV + 9 J fi(si, t> dS], 1 
R R i=l Si 

(14.a) 
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the integration of which, along with the use of (3), gives 

t 

s s - s n -+ - Z-(P,t)dV= QP)dVT; Q(p, T>dv+ /, j 

R 

fi(si, T) dSi] dr. 

R 0 R i=l di 

In view of (14.b), expression (13) is rewritten as 

where 
1 t 

Q(P, 4 d i-’ dT + b 
SJ 

fi(si, T) d& dT 1 . 
0 R 0 Si 

From (14.b) and (16) it follows that 

P 

2 Q,(t) = ; s T(P,t)dI’-; F(P) d v, 
j=o R 

= J-w(t) - z-*“(o). 

Thus, the physical interpretation of 5 Q,(f) is that it represents the difference between the space- 
,=? . 

average temperature at time t and the n-ntial average temperature of region R. 
In order to determine the differential equations satisfied by the Toj(P, t) functions it is required 

that they satisfy 

s 

1 
d&P) Toj(P, t> dt’ = KX” 601 

[ s 
b&‘) Q(f’, t> di’ i 66j 

s 
&z(~i>fi(~6, t) dS6 , 

I 
A,, + 0. (IS) 

m 
R R Si 

It should be noted that in writing (15) it has been tacitly required that 

J Toj(P, t) dV = 0. 
R 

(19) 

Now the Laplacian V2 is applied formally to both sides of (15) to yield, in view of (lO.a), (18) and (9) 
as applied to T(P, t) and Tej(P, t), the equation 

9 

V” T(P, t) = 
2 

1 fo 
V” TojCP, r) + ; 

2 

d 
Cm MP) S 

s 
MP) T(P, t) d V. 

j=o ??a=1 R 

Using the expansion formula (13) with Toj(P, t) replaced by zero, and taking into account (14.a) and 
(16), the above result becomes 

1 BT(P, t) 
V? T(P, t) = 7 V” TOj(P, t) + ; Bt - - 

-I 
J=O 



ON THE THEORY OF CONDUCTIVE HEAT TRANSFER 

which, in view of (t), reduces to 

4 

b 1 d&CO 
V” TOj(P, t) f x Q(P, t) - - - 

1 
= 

o 

Kdt * 

Thus the pseudo-steady temperature distributions TO@, t) satisfy the differential equations 

It is further required that they satisfy the boundary conditions 

535 

(20. b) 

Using (10) and (20), it can be shown that the Toi(P, t) functions satisfy (18). By utilizing the Gauss 
Divergence Theorem it can aIso be shown from (20) that (19) is satisfied. 

The pseudo-steady solutions Toj(P, t) comprise essentially a set of fictitious steady-state tempera- 
ture distributions in which r is regarded as a parameter. They are to be determined from the system 
(20), subject to the conditions of (19). These should be compared with (5), the defining system for 
q](P, r). In view of (181, the series expression for Z”or(P, t) is 

* c 
To@, r) = ; 2 x; &z(P) 6~ #m(p) Q(P, 1’) dv f &f &&s)A(st, 0 dS 

m [ J J I 
. (20 

m-+1 R Si 

it shoutd be noted that although X0 = 0 is also an eigenvalue of (HI), expression (21) does not include 
the term corresponding to m = 0, since T&P, t) satisfies (19). If the T&P, r) functions can be 
determined directly from (20) and (19), the above eigenfunction expansions for Toj(P, r) constitute 
a set of su~ation formulas, and the similar other concluding remarks of [I] apply ~#r~r~~ ~~#~~~~~ 
to the expression (21). 

Next, (9) is integrated with respect to t, after replacing $L(P), T*(P, r) and T,;(P, t) by #m(P) 
T(P, r) and TQ(P, t), respectively, and the result introduced into 05) to give the following expression 
for the temperature distribution T(P, t): 

P 

TCP, r) = ; J W)df’-t- 2 [QjW -I- TokP, 03 R f=O m -I- 2 Cm d&P) exp (---~hff) (J AdP~ [F(p)- 2 ~oWB] dy 
rn=l R 3=0 

P t 

- 

CJ 
exp (df T) 

J 
#&P) T#, 7) dV dr 

> 
. 

j=o 0 R 

An alternate expression obtained by substituting (16) and (18) in (224 is as follows: 

. (224 

(22.b) 
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In this second solution form for T(P, t), the source functions Q(P, t) and.fi(st, t) appear explicitly. 
Direct substitution shows that the solutions (22) satisfy the differential equation (1), the boundary 
conditions (2) and the initial condition (3). 

In the derivation of (22) it is tacitly assumed that the source functions f(P), Q(P, t) and&&, t) are 
integrable with respect to their independent variables. To guarantee the uniform convergence of the 
infinite series in (22) it is further assumed that f(P), Q(P, t) and fifsi, r) possess continuous first and 
second order partial derivatives with respect to space variables, and that the time-dependent source 
functions Q(P, t) andft(sl, t) possess continuous first order partial derivatives with respect to t. 

The difference between the solutions to the system of (1), (2) and (3) as expressed by (22), and 
those to the system of (1), (2’), and (3) as expressed by (4) can be seen by a comparison of the two. 
The difference is not only due to the explicit presence of the additional J?j(t) and (l/V) j f(P) d V 

terms in (22) but also due to the implicit effect of the n,(t) terms on the solutions (22L sinct the latter 
also appear, as fictitious volume sources, in the differential equations (20.a) for the Tor(P, t) func- 
tions. In addition, the zeroth order pseudo-steady solutions Toj(P, r) are subject to the conditions 
expressed by (19) without which they are indeterminate. As shown by (17), the additional terms of 

s 

Q 
1 
v f(P)dVf 

c 
Q,(t) 

R j=O 

appearing in (22) represent the space-average temperature throughout region R and constitute a 
characteristic feature of the solution of heat conduction equation in a finite region the entire surface 
of which is subjected to boundary conditions of the second kind. This is of course obvious from the 
physical nature of the problem. 

As in the case of [I], the general solution (22) can be expressed in a more compact form as 

P 
r 

T(P, t) = Tl(P, 1) + C! Q,(t) + To;(P, r) - 
t i%j(P, J[ T’, f - T) 

~____ 
w I I! 

dT . (23) 
r’= T 

i=O 0 

In this expression Tl(P, t) is the solution of 

with 

V” Tl(P, f) = ! !z!_d , PinR, t>O, 
K zt 

K 
2Tl(P, t) 
- 

&li 
= 0, P on Si, 1 > 0, 

and 

Tl(P, t) = F(P) - i Toj(P, 0), P in R, t = 0, 
j=O 
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and is given by 

TI(P, t) = k 1 P(P) dk’ t 2 Cm &(P) exp f- rh$)[ d&P) [F(P) - 2 T&P, 0)] dv, 
R ni=1 R j=O 

(2S.a) 
Or 

7”t(P, t) = iy 1 P(P) dk’ i- $ C, #m(P) exp f-wait) { [ &(P) F(P) dY 
1 

1 
R Z&=1 R 

t 

1 

9 
/ (2j.b) 

_- 

?&I; 
[s 

&tW QU',O) dv+ 
2s 

d&Msr, 0) dSz ‘. 

11 

1 

R I=1 Si i 

Similarly, @f(P, f, t) are the solutions of 

1 2QjV, 7.7 f> v’@j(P, T, t) = ; 
Et 

-, PinR, t>O, 

with 

K 
ZQj(P, r, t> 

Pfli 
= 0, P on Si, t > 0, 

and 
&(P, T, t) = Tor(P, 4, PinR, t=O, i 

J 

and are given by 

%(P, 7, r) = I? G 4&P) exp (--~h$,t) J V& (P)To#‘, 7) d V, (27.a) 
?%=I R 

or 
* 

@f(P, 7, I) = 
c 

Gn &78(P) 
exp (-KQ) 

Rh’ 
[ J 60~ dr@) P(P, T> d v 3 641 J em fi(Si, T> dS I . (27.b) 

m 
m-1 R $f 

It should be noted that use has been made of (19) in writing (25) and (27). Thus, [7’l(P, t) - T,,(O)] 
and Qf(P, T, r) constitute entirely transient solutions composed of exponentially decaying terms, and 
satisfy homogeneous differential equations and homogeneous boundary conditions. It follows from 
(23) and (25) that the quasi-steady temperature distribution is given by the asymptotic behavior of 

4 

t 
z-z(P, t) = $ 

I 
W’)dJ’+ 

Ci 
Wr) + TodP, 0 - 

S[ 

i%$(P, T’, 1 - T) 
26 cw 

R 3-O 0 

for large values of time t. 

APPLKATKON 

By way of tllustration of an application of the foregoing results, a general problem that has not 
been solved before will now be considered. The problem is the determination of the unsteady 
temperature distribution in a right circular solid cylinder of finite length, with its entire surface 
subjected to boundary conditions of the second kind. Using cylindrical polar co-ordinates, r, q, 2, 
and choosing the z-co-ordinate along the geometrical axis of the cylinder, the region R is defined by 
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Evidently, q = 3. Let i = 1,2. 3 refer, respectively, to surfaces I = --b, I = b and r = CI of the cylinder. 
Then, (I), (2) and (3) yield respectively, 

(0 < r < 0, 0 < p < 277, 121 < b, t > 0), (29) 

_ KaT(r, v, z, t> 
az =_fdr, q, t>, (0 d r < 4 0 <T < 277, z = -b, t > 0), (30.a) 

K 
W! 9, 7, t) 

z-7 
=ji(r,q,r), (O<r<a, 0<~<2n, z=b, r>O), (30.b) 

KVr, V, 2, t) 
ar =h(q, 2, f), (r = a, 0 < Q < 2~, Izj < b, t > 0), (3O.c) 

T(r, F, z, t) = F(‘(r, P, z), (0 < r < a, 0 d cp B ~YT, Izj < b, t = 0). (31) 

The eigenvalue problem corresponding to (10) is expressed by 

k&r, V, 2) = 0, (0 < r < n, 0 < y < 2fl, 1~1 < b), 

(32.a) 

a4kmn(r, v7 z) - 
aZ 

= 0, (0 < r < a, 0 < v < 2n, z = -b), 1 

+kmn(rt ‘p, Z) 

?Z 
= 0, (0 < r < a, 0 < 9: < 2rr, z = b), } (32.b) 

‘%k?nn(r, y, Z) 

ar 
- = 0, (r = a, 0 < cp < 27r, JzI < b). 

J 

The eigenfunctions of (32) well-behaved at r = 0 are obtained in terms of two triple index sets as 

dkmn(r, PI, Z) = { 

Jk(/.Lkmr)COS kq COS y 

1 Jk(/.Akmr) Sin kv cos ; 

and the eigenvalues hkmn are given by 

(k,m,n=0,1,2 ,... ), (33) 

(34) 

where apkm 2 0 is the mth root of 

or of 

(Pkm+&km~) = 0, (35.a) 

(Pkma) Jk+&kd) = k .h&kma), (35.b) 

and the prime in (35.a) denotes differentiation with respect to the argument. It is to be noted that for 
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k # 0, pi,,, = pko = 0 is not an eigenvalue of (32). Zeros of J;(x) for orders 0 < k < 20 are con- 
tained in [21, and for orders 21 < k < 51 and 0 < x < 100 are tabulated in [3]. 

From (i 1> and (33), 

a ?nb 

=&l + SkO)(l + S,o) 1 - [ (--&)‘I 4(Pkm4. 

Since V = 2~~~96, (16) yields 

1 a “n b 

Qo(f) = &q * ; JJJJ Q(r, 9, z, T) r dr dv dz dr, 

00 O-b 

1 I/=?* 
Q,(r) = - * - 

2rratb K JJJ _fl(r, v, T) r dr dg: dT, 

0 0 0 

t n ?r 

1 K 
Q3(t) = - * - 

25ra’b K JJJ f$, 9, 4 r dr d? dr, 0 0 0 
t 2a b 

R3(1) = $Fb * ; JJJ f3(97, z, T) dv dz dT. 

0 O-b 

From (22.a), (33) and (36), it follows that 

JJ F(r, 9, z) r dr dy dz + VW) + Toj(r, v, z, t >I 
0 -b j=O 

J&d) cos (m/2) (1 +- z/b) exp (-Kh;,,t) 

(1 + sko)(l + hao) [l - (k/tL~ma>2] J:(pm~) 
k=O m=O n=O 

(k=m=nfO) 

“n ob 3 

SIJJ J&kmr) cos y 1 + i 
( I[ 

F(r, go’, z) - 
c 

T&r, q~‘, z, 0) 
I 

r dr dz 
- 

0 0 -b j=o 

3 t a b 

- CJ eXp (K$,,d JJ J&kmr) cos 5 
( ) 

1 f g ioj(r, q~‘, z, T) r dr dz dT 
> j=o 0 0 -b 

cos k(g: - rp’) dg;‘. 

‘I 

I (36) 

i 

(37.a) 

(37.b) 

(37.c) 

(37.d) 

- (38.a) 
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Similarly, from (22.b), (33) and (36) it follows that 

n ‘Za b 3 

TCr Y, =, f> = 2&b 
. * 

JJ 3 F(r, y. 1) r dr dT dz f 2 [I?~([) f TOi(', Q, =, [)I 

0 0 -b j=O 

(k=m=nfu) 

27 a b 

F(r, Q’, I) - Q(r> v’ zv 0) 

n b 

[JJ 
0 -b 

n fi(r, v’, O)] r dr - 
0 J&/ma) 

n-x;,, 

Jo 
(L 

z, T) r dr dz + J J&m-) 
0 

[fi(r, p’, 7) f (- l)n_h(r, p’, ~)l r dr + a J&MI) 
b 

J cos y (I + i) _f3(r, p’, 7) dz] dT1 cos k(cp - y’) dg;‘. 
, 

-b 

(3&b) 

J 

Thus, once the pseudo-steady temperatures Tof(r, y , z, r) have been determined, the expressions (38) 
together with (37) give the unsteady temperature field in the cylinder. The Z”ol(r, y, z, t) functions are 
determined by the repeated application of one-dimensional finite integral transforms. 

Determination of T&r, p!, z, t) 
From (19) and (20), withj = 0, the differential equation and conditions defining Too(r, 9, z, t) are 

i_” 16 1 E” F” 
7-, i- - cr- r g + 7 T, + G r- 8~- 1 

1 1 dQo(t) 
7’oo(r, P, z, t) + x Q(r, P, z, t) = - 

7 

Kdt’ I (39) 

(0 < r < a, 0 d ‘F ,< 27~, IzI < b), i 

-K 
aToo@, pl, z, t> 

EZ 
= 0, (0 d r < a, 0 < p < 2x, z = --b), (40.a) 

KToo(r, ‘F, r, t) 
&! = 0, (0 < r < a, 0 < fp < 27~, z = b), (40.b) 

K 
zToo(r, P, z, t) -._ 

Zr 
= 0, (r = a, 0 < y < 27, IzJ < b), 14O.c) 

a_ 1, b 

,J 1 jb Too(r, CFY z,t)rdrdpdz=O. (41) 



ON THE THEORY OF CONDUCTIVE HEAT TRANSFER 541 

In order to solve T&r, Q, z, t) from the system of (39), (40) and (41) first a finite cosine transform 
is defined as 

zl0(~, k, 2, t; cp’) = 2[ Too(r, 91, z, r) cos k(p, - P’) dv. 

The inverse transform of (42) is given by 

k=O 

The equations (39) and (40) are now transformed by (42) to give 

--K 
GFoo(r, k, 2, t ; qf) 

az = 0, (0 < r < n, : = -b), 

aTo&+, k, 
K---- 

z, t; p;‘) 
az 

= 0, (0 ,< r < a, z = b), 

In order to determine peefr, k, I, t; gf), another finite cosine transform is defined as 

= 

b 

Too(r, k, n, t ; rp’) = J rioo(r, k, z, t ; p-‘) cos f 

-b 

the inversion formula for which can be expressed by 

1 F ?oo(r, k, n, t; tp’> 
Too@-, k 2, c ~7’) = z k - (1 f &so) 

(43) 

1 

i (44) 

i 

(45.a) 

(45.b) 

(45.c) 

(46) 

(47) 

The application of (46) to the system of (44) and (45), along with the use of the Gauss Divergence 
Theorem in the z-co-ordinate, results in 

f 
&+‘; ;-(;+!$)] Foo(r,k,n,t; pl')+-&,k,n,r; y‘) 

4rrb 
=- 

K 

(0 Q r < a), 

(48) 

H.M.-ZM 
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In terms of transform notation, (41) can be rewritten as 

7 ?~:oo(r, 0, 0, t; p’) r dr = 0. 
II 

(50) 

The solution to the system of (48) and (49), well-behaved at r = 0, is 

I ’ 
a 

F,o(r, k, n, t; pl’) = - 
K [s G&p, r) &p, k, n, t; qf),p dp 4- J Gkn(r, P> &‘(p, k, n, t; pl’) fdf 

0 r 

(k = n # 01, J 
where 

in which primes indicate differentiation with respect to the arguments and 

(52.b) 

For k = n = 0 the solution to the system of (48) and (49) well-behaved at r = 0 is determined by 
use of (50) and is given by 

a r 

%&, 0, (At;@) = $ Q*ht) P3h + J J 
0 0 r 

where 

4rrb d&(t) 
Q*(r, t) = ; &r, 0, 0, t; p’) - T dr. 

The above expression for ?ao(r, 0, 0, t; q~‘) can be rewritten as 

?rrb a 

Foo(r, 0, 0, t; p’) = ; 
r ‘p2fr2 3 J Jis( ) 

I 

~ - 4 2a2 Q(p, y, 2, t> p dp + 1 In ($ Qb e, z7 t> p dp 1 
O-b o 0 I 

a 
1W.b) 

+ In % Qb, v, z, t> p dp dg, d--. / 
s 0 > I- J 

If Q(r, go, z, t) is independent of r, (51.b) gives C&r, 0, 0, t; qf) = 0, as expected. This serves as an 
independent check on (51.b). The combination of (43) and (47) yields for T&r, Q, I, t) the expression 

1 m p no(r, k, n, t; y) 
T00(r,p,z, t) = - n-b cc (1 + 8kO) (1 + *,o)cos; 

k-0 n=O 

(53) 
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Introducing (51) into (53) 

Bnb a 

Too(r, fp, z, t) = - 

O-b 0 

r 

Qhp’,z, t) pdp + J 0 ln r !! Q(P,F’,~,~> pdp 

0 

a 

+ In 9 J 0 
+i-1 I J ( ) 

k=l 0 -b 

ak r pk 

r a Q(P, ~‘9 ~9 t>p dp -i 
0 ' 

(a)* J: [($)“+ (;)“I Qh~.,whdp} 

cosk~~-p')dp~dz+~Kj‘ ~cos(;~~~~~~~(~k~(p,~~Q(p,,, 

r--la 
k=O n=l O-b 0 

a 

+ J ‘&n(r, P> Q(P, cp’, zr [ cos k(v - p’) cos 7 

t 

-‘,f)pdp 

. (54) 

It is noted here that in determining ?“oo(T, k, z, t; cp’) from (44) and (49, a finite Hankel transform 
can be applied to (44) and (45) instead of the finite cosine transform of (46), and thus an alternate 
expression can be obtained for Too(r, v, -, 7 t). This procedure is illustrated in the determination of 
ToI(r, pl, z, t) and Tes(r, qz, z, t), and the corresponding expressions are given by (70) and (78), 
respectively. 

From (54), the two-dimensional cases of pseudo-steady temperature distributions can be readily 
written down. Thus, if Q(r, v, z, t) is independent of 9, the problem becomes one of axial symmetry 
and only the terms corresponding to k = 0 contribute to the solution expressed by (54). Hence, 

Too(r, z, 1 b a p’+r’ ‘> = 2iK s(J( 
3 

w -4 
) 

Q(p,z,t>pdp+ r J t.) In ‘r Q(P, z, t) P dp 1 
+J’ln(5) Q(p~~,~~pd~+~~~cos~~l +;;I{ 1 Gdp,r)Qp,z,t) pdp 

I 

-b 0 

On the other hand, if Q(r, q~, z, t) is independent of z, there is no axial conduction and (54) reduces 
to 

‘?r; * 

1 
7-a&, p, t, = KK JIJi p2 + r2 3 -- - 4 2a2 ) 

Q(P, P’, 6 P dp t j In (4) Q(P, P’, 0 P dp 
] 
I 

0 0 
(I 

+ ln i Q(P,P’, r> pdp J 0 > W +.i& 
r 

2 ‘jr[(;)ki ($“1 j(~)kQbwf,~~ pdp I,,,,, 
k=l 0 0 

I 

+ (;)“/[(;j”+(;)‘] Q(p,rp’,l)pdp}Cosk(~-‘g;l)d~‘. 
r 
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If Q(r, F, 27 t) is independent of both p: and 1, (54) simplifies to 

Q(P, t) P dp + 
0 r 

(55.c) 

If, in addition, Q(r, t) is independent of r, (55.c) gives 

Too(t) = 0. (55.d) 

Determination of Tol(r, q, z, t) 
From (19) and (20), withj = 1, the differential equation and conditions defining Tor(r, ‘F, z, t) are 

2” ,lE laz 
-- +;?,+;? Tol(r,g,z, 

1 d-W) 
ST rPr t)=;r, 1 

(0 < r < a, 0 < e, < 277, IzI < b), 
1 (56) 

J 

--K 
ET&, v, z, t> 

az =fi(r, v, t), (0 < r < a, 0 < fg3 < 2?T, z = A), (57.a) 

K 
sTol(r, P, z, t) = 

az 
o 

9 (0 < r < a, 0 < q3 < 277, z = b), 

KaTor(r, V, z, t) 
Zr = 7 

o 
(r = a, 0 < p < 27r, IzI < 6), 

7 ‘iJ” Tol(r, q~, z, t) r dr dg, dz = 0 
0 0 -b 

(57.b) 

(57.c) 

(58) 

The transformation of (56) and (57) first by (42) and then by (46) leads to the following system: 

48b _&, k, t ; pl’) = K &O . ho 

(0 < r < 4, 

,80dr, k, n, t; qf) 

Zr 
= 0, (r = a). (601 

The solution to the system of (59) and (60) is given by 

r R 

Ffjl(r, k, n, t; q’) = $ 
[s 

GAP, r)xC~,k, t;qfl P dp + J Gdr, P>&P, k t; ~'1 PIP 1 1 , (61.a) 
0 r 

(k=nfO). 

For the case of k = n = 0, the solution is obtained, after utilizing (58), as 

J 

“n a 

%(r, 0, 0, t; q’) = f J{J( pQ+r2 3 ) ----4 2a” fl(p.vJ)pdptj:ln(;)f~(p,pl,t)pdp 

1 
1 

0 0 0 

+ a ln ,:’ fdp, (p, t) p dp 

(61 .b) 

J 0 ! 
i 

dq. 1 r i 
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Introducing (61) into (53) as applied to Toi(r, v , I, t), the following expression is obtained: 

+(d)“j[(~)“+($)k]/l(P,~‘,~)pdp)cosk’~-~”dyf 
r 

1 CD - 
?n r 

-i-- 
cc 

cos (n42) (1 f z/b) 
xbK (1 + 6kO) J[J G&J, r) .lih ~‘3 t> P dp 

k=O n=l 0 0 
a 

+ 

J 
Gkn(r, P> _fi(p, p’, 2) P dp 

1 
~0s WV - v’> dp’. 

r 

For the axisymmetric case (62) reduces to 

To1(r, z, t) = 2-& [J: (fg - a) 
T 

fl(p, r> P dp + 
J i) 

In 1 fdp, 0 P dp 

~-~ln(~)jib,~~p~p] +&z cosy(l +i) [SGon(P,I),fi(p,i)pdp 
r 78=1 0 
a 

+ 

J 
Go&, P> fitp, t> P dp 

1 
, 

r 

If in the above expression_fr(r, t) is independent of r, then in view of 

r Li 

J 
GO&, r) p dp + 

J 
Go&, P) P dp = ‘3 

0 + 
(63.a) becomes simply 

i 
(62) 

+ (63.a) 

(63.b) 

It is instructive to derive an alternate expression for TO&, v’, z, t) given by (62). For this purpose a 
finite Hankel transform of order k is defined for Tool(r, k, z, t; rp’) as 

@or(m, k, r, t; 45’) = 7 To&, k, z, t; q~‘) J&kmr) r dr. 
0 

The inversion formula for the above transform is 

For(r, k, 2, t; P’) =,%,L +or(m, k, z, t; 9’) J&M), 

(64 

(65.a) 
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where 

1 u --= 
Dkm s J;(,ukmr) r di- = ; ” [ 1 - lb&)‘] .&k,,a). 

0 

(65.b) 

In (65) it is to be noted that since PkD = 0 is not an eigenvalue for k + 0, the summation starts with 
rn = 1 for k # 0. For k = 0 the summation starts with m = 0, since ~00 = 0 is actually an eigen- 
value. If now the system of (56) and (57) is transformed by (64), following its transformation by (42). 
the following system is obtained: 

-K 
&&n, k, z, t; p’) 2 

%z =f1(m k, t; 9;‘>, (z = -b), 

K 
6?Ol(,n, k, =, t; p’) = 

2z 

o 
f (z = b). 

In terms of transform notation (58) can be expressed as 

; ?X(O, 0, =, t; p’) dz = 0. 
-b 

The solution to the system of (66) and (67) is given by 

,-. 
~&I, k, z, t; q’) = 

cash ,Lkm (b - IT) ^ 
Kpkm sinh (2 pkmb) fi(m, k, t; 9’)~ (k = m # 0). 

For the case of /Lkm = ~00 = 0, the solution is obtained, after utilizing (68), as 

b? 2 

- - 3 1 fdo, 0, t; 90 

(66) 

(67~) 

(67.b) 

(65) 

(69.a) 

(69.b) 

The result of introducing (69) into the combination of (65) and (42) as applied to Tol(r, v, z, t). is 

T&r, f$?, z, 1) = - 
b’ 

___ - - 
3 lss 

fdr, p, t) r dr dg: 
0 0 

2-T- o 
a ‘2.2 

/ 

vaK/ c Jk(Cckmr) ash [Pkm (b - z>] 1 J, fi(r, p’, t) J&e&) COS k(p: - rp') r dr d@ 

(1 f 8ko) [I - (k/pama)‘] &ma) .&%ia) sinh (&kmb) 
* (70) 

L=O m=l 

Thus, (70) and (62) comprise two solution forms for Tol(r, p1 , z, t). They are both in the form of 
double infinite series. For purposes of numerical computation, (62) is preferred to (70) since the 
latter requires the solution of (35) for the eigenvalues ,.Lkm, whereas (62) employs summations ov-er 
positive integer values of k and n. A similar alternate expression can be obtained for Too(r, y, I, t) in 
the same way. If fl(r, cp, t) is independent of p, (70) yields the axisymmetric case 
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Tol(r, 2, I) = 
2 [(b - $2 

-- 
a2bK 1. 4 

62 a 
- J 

IS 
ji(r, t> r dr 

0 

li 

+bfi( 
c 

Jo(pmr) cash [ynr (b - z)l 7 M, t) ~o(~~~) r dr 

(p,a) JE(p,a> skh (2cLmb) 
??&=I. 

7 (71.a) 

where the subscript k = 0 in pRn has been dropped. This expression should be compared with 
(63.a). If,fr(r, C) is independent of r, then since 

“f J&w) r dr = 0, (m i 01, 
a 

(7 I .a) reduces to 

From (71.b) and (63.b) it follows that 

(71 .b) 

(72) 

which is the well-known Fourier expansion. 

Determination of Tot@, 9, z, t) 
From (19) and (20), with] = 2, the differential equation and conditions defining To&, p;, z, t) are 

(0 < r < a, 0 Q ‘p < 2~, z = -b), (74.a) 

KaTa2(r, QI, z, t) 
az =fi(r,rp,t), (O<r<a, 0<9<2~, z=b), 

(r = a, 0 Q y < 2n, !zI < b), 

f f f To2(r, cp, z, f> r dr dq dz = 0. 
0 0 -b 

(74.b) 

(74.c) 

(75) 

The solution to the system of (73), (74) and (75) is obtained in exactly the same fashion as that used 
for T&r, 9, z, r). The result is given by 



(- 1)” cos (m/2) (I f z/b) 
- 

(1 + 8kO) 
&a(/‘, r) _hh q’, t) P dp + 

0 0 

For the axisymmetric case (76) gives 

In the one-dimensional case in the z-co-ordinate, (77.a) reduces to 

(77.b) 

Similarly, through the application of the finite Hankel transform of (64), the following alternate 
expression is obtained for To2(r, 9, t, t): 

a ‘L’n 

(b + z)” b” * --q-- - - 3 ISJ M, 9, 0 r dr dq + V&K 2 2 
0 0 k-0 m-1 

J&w~) cash [pkm(b + 41 1 r Ml v’, t) J&d ~0s Mq, - P? r drW 
(1 f &O)[l - (k/p~~ma)~](/~rnU) J;(Pkma) shh (%umb) ’ 

The axisymmetric case is readily obtained from (78) as 

a b” 
m -- 3 15 

.Mr, t) r dr 
0 
3c 

2 

Jo&r) cash [pm (b + z)] ‘j: h(r, t) Jo(mr) r dr 

rn=l (~,a) J;(pma) s:rh (2&O ’ 

(75) 

(79.a) 
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and the one-dimensional case follows from (79.a) as 

The comparison of (77.b) and (79.b) gives the Fourier expansion 

which should be compared with (72). 

Determination of T&r, go, z, t) 
From (19) and (20), withj = 3, the differential equation and conditions defining Toa@, q, z, t) are 

549 

(79.b) 

1 d-Qa(t) 
Toa(r, y, I, t) = ; --&-’ 

1 

i 

(81) 

(0 < r < a, 0 < q < 2x, Iz/ < b), 

(0 < r < a, 0 < cp < 277, z = -b), (82.a) 

(0 < r < a, 0 < p < 277, z = b), (82.b) 

K=03(‘, q9 Z, j > 

f?r =fs(p., z, t), (r = a, 0 < p < 27, 111 < b), (82.c) 

6 6 j, To&, r~, z, t> r dr dq dz = 0. (W 

As in the case of Too(r, p: , z, t) and Tol(r, q, z, t), the system of (81) and (82) is transformed succes- 
sively by (42) and (46). The solution of the resulting system when introduced into (53) as applied to 
Toa(r, v, z, t) yields the expression 

“n b XI m 

JJ 

cos k(p, - pj’j 
h(v’,z, fj k dqf dz + fl+K n 

l&r/26) cos (nrr/2) (1 + z/b) --. 
1 

- - Z&nsra/26) n(1 + 8kO) I 

0 -b k=O n=l 

2n 0 
1 (84) 

JJ 
fs(cp’, z, t) cos k(p7 - q’) cos ‘; 

( i 
1 + ; dp’ dz. 

0 -b 

In the case of axial symmetry, (84) reduces to 
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Iffa(v, :, t) is independent of :, there is no axial conduction and (84) gives 

If ji(q:, =, t) is independent of both a: and z, the problem becomes one-dimensional in the radial 
direction, and (85.a) and (85.b) both reduce to 

c7 
T-03 (r, t)= -- 

jr2 

i 1 
-’ - - 

2K cl” 1 f3O). 2 

An expression alternate to (84) can be obtained for Toa(r, y, z, t) as in the case of Tol(r, (F, I, t) and 
7-oz(r, Q, z, t). 

This concludes the determination of the Tojfr, p , z, t) functions appearing in (38). In summary. 
TO&, y, z, t) is given by (54); ToI(~, q, I, t) by either (62) or (70); TO&+, rp, z, t) by either (76) or (79: 
and T03(r, rp, z, f) by (84). 

Numerous special cases of heat-conduction problems, with boundary conditions of the second 
kind, follow from the general solutions (38). As an example, suppose that there is constant flus at 
r = a, the faces : = -@ are insulated, there is no heat generation throughout the volume, and the 
initial temperature is zero. Then, from (37.d), 

and from (85.c), 

af3 r2 1 
T&r) = 2, - - - 

C f 2K a2 2 
. 

In (38.b) the only non-vanishing terms are those corresponding to k = n = 0, and (38.b) reduces to 

2f3 a 
T(r, t) = Q3(t) + T03(r) - - c exp (--+Lt) Jotpmrl 

Ka & 
‘-9 
Job-w) 

rn=l 

or 

T(r, t) = - ‘$yT!+!(g_;J_ 

where, in view of (35.a), the eigenvalues ,u~ are determined from the positive roots of 

- J&ha> = Jl(tLdz> = 0. 

(56) 

Expression (86) is given as equation (1) on p. 203 in [4]. 
Another example that has been studied by several authors [5], [6], [7] is the one-dimensional flow 

of heat in a slab one face of which is subjected to a heat flux given as an arbitrary function of time, 
when the other face is insulated. To obtain this case from the general expression (38.b), it is sufficient 
to let F(r, q, 2) = F = const., Q(r, p, z, t) = OJi(r, p, f> = 0, h(r, a?? t> =h(O, f3(p, --: 0 = 0 in 
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(3&b), whereby the only non-vanishing terms are those corresponding to k = m = 0, that is 
/Jkm = ~00 = 0. Thus, (38.b) yields 

From (37.c), 
t 

J-&(t) = & J h(7) dr, 

0 

and TO& t) is given by (79.b). Thus, 

T(z, t) = F + 26K 
’ j/lodr+ [i!!$?-!f]&i$ 

0 

The equivalence of this expression and equation (20) or (21) of [5] follows from the substitution 
x=b+ I = (n/2) + z. If the heating rate is independent of time, and F = 0, (87) becomes 

T(z, r) =brzIKc + 1 1 K l_2b2 [4( -/-;)a-;] -($‘~~cos~(l +i)eXp(-.!!$sKl)}, (88) 

?I=1 

which corresponds to equation (3) on p. 112 in [4]. These one-dimensional solutions, (86), (87) and 
(88), could have been obtained directly from the general solution (22.b) along with the use of (lo), 
(16), (19) and (20). 

A further example which has been treated in [8] in connection with the heating of semiconductor 
devices is the one-dimensional unsteady temperature distribution in a thin, thermally insulated disk 
initially at zero temperature and suddenly heated by a heat source of uniform volume density in a 
circular area at the center. The solution given as the combination of equations (5) and (6) of [8] is 
not very suitable for purposes of numerical evaluation. This is due to the presence of the factor, 
[l - exp (-TP)], in the series summation, which introduces the poor convergence. The solution to 
this problem expressed in a more suitable form can be readily obtained from the general expression 
(38.b). Indeed, letting F =fl =fi = fa = 0, and Q = Qo[H(r) - H(r - ~a)] in (38.b), where 
H(X) is the Heaviside unit step function and ?a (0 < 7 < 1) is the radius of the circle in which the 
constant heat source Qo is acting, yields the expression 

P 

T(r, r) = Go(t) + Too(r) - 2 $Cz% 
c 

-fl(Prna?) JO(Pmr) . eXp (- Kpi I) 
J$&ma) (MaI ’ (89) 

after evaluating the integral 7 Jo(pmr) r dr. From (37.a) and the above-mentioned expression for Q, 
it follows that 0 

&(t) = $T'Kt. (90) 



Using this value of Go(r), Too(r) is readily determined from the one-dimensionalized version of (39), 
(40) and (11) as 

The expression (89) used in combination with (90) and (91) constitutes the solution, and ~~a is the 
mth positive root of~l(~~~) = 0. Withj = Ot it follows from (2 I) specialized for the one-dimensional 
case in r, that 

The equivalence of the present solution given by (89) and that given by the combination of (5) and 
(6) of [S] follows from the summation formula (92). The difference between the two solutions lies in 
the fact that, (89) utilizes the left-hand side of (92), an expression in closed-form, whereas the 
combination of (5) and (6) of [S] utilizes the right-hand side of (92) which is a slowly converging 
series expression. 

Lastly, a set of two one-dimensional problems, one for the cylinder and the other for the slab is 
considered and numerical results are presented in the form of charts. Consider a cylinder insulated at 
the faces L = +b and subjected at the surface r = a to a heat flux proportional to time, the initial 
temperature and internal heat source being zero. In this case ,fa(y, z, t) = f3t in (37) and (84) which 
yield, respectively, 

F~thermore, F =.fl =_A = Q = 0 and_&@ , z, t) =f$ in (38-b) which becomes 

z-(r, t) = 03(t) + z-03@, 1) - 2f$ 
pI Jo&r) exp (- ~&t) t 

2 
~ * 
J&ma) (haY s 

exp (K&P) dT. 

??Z=l 0 

Performing the indicated integration in the above expression and making use of the summation 
formula 

1 r* 1 r4 1 
E a2 ( 

Z Je(pmr) I 
------ = 

2a4 3 1 c 
_.Y 
Jo(ma) G-ha>4 ’ 

O<r<fl, (93) 
m=, 

one obtains 

(~j~(r,o=(~)2+~(~-:).~_~($_:I171_~~~~~~~~.exp(il~~‘, 

m-1 (94) 
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where pma is the &h positive root of Jl(pmn> = 0. For large values oft the infinite series part of (94) 
becomes vanishingly small and the first three groups of terms of (94) correspond to the quasi-steady 
value of T(r, t). Using the tables of Bessel functions given in [9] and the roots of Jl&ma) = 0 
tabuiated in [Z], the sum of the third group of terms and the infinite series appearing on the right- 
hand side of (94) has been numerically evaluated. These results are presented graphically in Fig. 1 for 
various values of the Fourier number, (Kt/&). in which the ordinates give the values of 

(5) T(r,r)--- (;)‘-;(.$-;)$. 

Similarly, the corresponding results are readily obtained for the infinite slab IL] < b with the face 
I = b subjected to a heat flux varying linearly with time while the face z = -b is insulated. Letting 
F = 0 andfz(t) = f.t in (87), carrying out the integration and utilizing the summation formula 
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FIG. 1. Temperature response charts for the cylinder, 
0 < r < a, based on equation (94). 

FIG. 2. Temperature response charts for the slab, / zj < b 
based on equation (96). 



554 NURETTiN Y. dLCER 

the following expression is obtained: 

which should be compared with (94). The quasi-steady response is described by the first three groups 
of terms appearing on the right-hand side of (96). Graphs of 

versus (z/b) for various values of the Fourier number, (d/db?), are presented in Fig. 2. 

CONCLUDING REiMARKS 

The example of the cylinder problem treated here as an application of the general method shows 
that heat-conduction problems with boundary conditions of the second kind, no matter how compli- 
cated they may be, can be solved directly by use of the expressions (22), provided that the eigenvalue 
problem defined by (10) is solvable. The method does not require the use of Duhamel’s Super- 
position Theorem and is not restricted to any particular form of the geometry of region. The usual 
method of treating conductive heat-transfer problems with boundary conditions of the second kind 
is the Laplace transform technique. Especially in the case of complicated problems, the difficulties 
inherent in and the excessive amount of labor required for the Laplace inversion procedure are well- 
known. This is one feature of the Laplace transform technique that prohibits its practical application 
to general problems. Another limitation of this technique is the fact that it necessitates that the 
geometry of the region be given in advance, thus making it impossible to obtain a generalized and 
unified treatment with respect to geometry. The present method eliminates these difficulties and 
supplies the solution directly. 

Finally, it is worthwhile to note that (22.b) could have been expressed in the form of 

1 
T(PJ)=~ F(P)dY+-& 

s 
1 [ 1 Q(P, 7) dV + i’ [ fi(sz, T) d.Si] dT 

- 
R 0 R I=1 Sf 

I) 

i- 

c 

Cm &(P) exp (- K+) 
!S 

&t@‘) W’) d V + 
III=1 R 

1 P 

J 

. 

+-” 

K 
eXp (Khkr) 

H 

&n(P) Q(p, 7) d V + 
2s 

&d&j& 7) dSi I ! dr , ” R i=l .s* 

(97) 

in which the pseudo-steady functions TO@, t) do not appear. Although (97) is simpler than (22), the 
infinite series part of it does not converge uniformly but only in the Fourier sense. To illustrate this 
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point further, consider the simple problem, the solution to which is expressed by (87). Direct 
application of (97) to this problem gives the result 

t P 

T(z, t) = F + eK 
s 

j-i(~) ds -j- & 
c 

f- I)B cos 

0 n-1 
t 

This should be compared with (87). The expression (98) corresponds to equation (8) of i[6], except for 
the sign of the first term which has been corrected and expressed by equation (16) of [7]. 

It is interesting to note that the summations 5 appearing in (54) (Sb), (62), (76), (84) and 

(85.b) can be expressed in closed form by meanshot the following summation formuta: 

* 

co r *cosk(g,-ip’)= a k 
k=l 

Thus, for example, (85.b) becomes 

However, the resulting integrals are, in general, more complicated to evaluate. 
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R&au&-Des expressions generates sont obtenuea pour des distributions de temperatures transitoires 
darts des regions finies de geomttrie arbitraire, sous des conditions de flux de chaleur impost sur 
toutes les frontieres et avec des sources de chaleur dependant du temps et des conditions initiales 
arbitraires. Les sources (ou Ies puits) de chaleur sont distribueea dans l’espace et peuvent comme cas 
particuliers, Otre des sources surfaciques, lintiqua ou ponctuelfea. En introduisant en plus certaines 
fonctions de source de cbaleur fictivea, des solutions pseudo-permanentes correspondantea sont 
definies, au moyen desquelles les champs de temperature sont exprimts sous forme de solutions en 
s&ie uniformement convergentes. La methode g&t&ale de sofution eat apptiquee a une etude d&ail&e 
dun probltme de cylindre fini de nautre tres get&ale, qui n’a pas 6tC traitk auparavant. 
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L’etude actuelle constitue un compliment d’un article anterieur darts lequel on fait I'hypothese de 
I'existence de solutions permanentes lorsque les fonctions desource volumiquect surfacique imposies 

sent independantes du temps. 

Zusammenfassung-Fur instationare Temperaturverteilungen in endlichen Bereichen beliebiger 
Geometrie werden allgemeine Ausdriicke abgeleitet unter der Bedingung einer vorgeschriebenen 
Warmestromdichte an allen Abgrenzungen und mit zeitabhangigen Wlrmequellen und beliebigen 
Anfangszustanden. Die Wlrmequellen (oder Senken) sind iiber das ganze Volumen verteilt und 
konnen, wie in speziellen Fallen, Fllchen-. Linien- oder Punktquellen sein. 

Durch Einfiihren bestimmter kiinstlicher zusatzlicher Funktionen fur die Wlrmequellen werden 
entsprechende pseudo-station&e Losungen definiert, mit deren Hilfe die Temperaturfelder in Form 
von gleichfijrmig konvergenten Reihenlosungen ausgedriickt werden. Die allgemeine Losungsmethode 
wird auf eine eingehende Stud!e eines endlichen Zylinderproblems ziemlich allgemeiner Natur, welches 
bisher nicht behandelt worden ist, angewandt. Die vorliegende Arbeit erg&tzt nachtrlglich einen 
friiheren Aufsatz, in dem die Annahme gemacht wurde, dass station&e Liisungen existieren, wenn 

vorgeschriebene Funktionen fur Volumen- und Flachenquellen zeitenabhangig sind. 

,~HiiOT0~llH- B btBe;(eHbt 06mlte Bbtpa;tieHIIn &nR HeCTanltOHaptiOrO ~aCttpe~e.XHMn TeJt- 
nepaTj'pbt 8 tiOHeqHbtS 06JaCTFIX npOtI3BO~-tbHOft rcO,teTptttt npH3a;[aHHOM TeKtOBO>I nOTOW 
Ha BCeS rpaHttnaX, CICTOqHlltiaX Ten;ia,3aBtlCfttttHX OT BpeMeHtt, It np0113BO;lbHbIS HaqaJbHbtS 
~CZtOBWtX. LICTO~HI~KII (Km CTOKtt) Tenaa pacnpe~eaeaw n0 ncexv Odb@?tJ' II MOfvT CbITb, B 

YaCTHOCTil, ttOBepXHOCTHbtNH, JlIHefiHbI.\tlt KItI T09WHbI>Itt. 
nvTe.M BBe;lcHIlX @jWiuttfi, OnHCbtBatOtQtIX HeKOTOpbte IICti~CCTBeHHbte ;[OnOJHIITejIbHbte 

IICTO~HllIiIl, Onpe,Y&ZFttOTCn COOTBeTCTB~tN.tttIe nCeB;lOCTatJtlOHapHbte petttettttn, nptt rIOMOttItt 
tio~opbtx TelrnepaTypHbte no.-m BbtpamaroTcn B BCl;[e paBHOllepH0 CSO;IRtUItScR pnlOB. 
OGmttn ,leTO;l pC!ttteHtIn npll>tetfeH K ~eTa.ZbHON_Y tl3~WHttKl 3alaWt B KOHeLtHOM tWtttH;(pe 
oqettb odtttero xapatiTepa, tioTopan paHee tre pacc.vaTpnsanacb. 

HacTonqart padoTa 3aneptttaeT II JononHneT npe~br~pruyro cTaTbt0, B tiorOpOn 2e.-ta;rocb 
JOn~meltilc 0 C~ttteCTBOBaHIttt CTauttOHapHbtX petttetittfi nptt 3a;[aHHbtS O;Jbe?lHbtS It no- 

BcpXHOCTHbtX IICTOqHHKaS He 3aBtlCfttltHX OT Bpe>leHtI. 


