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Abstract—General expressions are derived for unsteady temperature distributions in finite regions of
arbitrary geometry, under conditions of prescribed heat flux on all boundaries and with time-de-
pendent heat sources and arbitrary initial conditions. The heat sources (or sinks) are distributed
throughout the volume and can, as special cases, be surface, line or point sources. By introducing
certain artificial additional heat source functions, corresponding pseudo-steady solutions are defined,
by means of which the temperature fields are expressed in the form of uniformly convergent series
solutions. The general method of solution is applied to a detailed study of a finite cylinder problem of
very general nature, which has not been treated before.

The present work complements and supplements a previous paper in which assumption is made of
the existence of steady-state solutions when prescribed volume and surface source functions are

independent of time.

NOMENCLATURE

Ai(si) > 0, Bi(s)) = 0, boundary coefficient functions on S;;

a, radius of cylinder;

b, haif length of cylinder;

Cm, coefficient defined in equation (11);

Cn» coefficient defined in equation (7);

Crmn, coefficient defined in equation (36);

Dim, coefficient defined in equation (65.b);

E(P), initial temperature distribution in R;

E(r, ¢, 2), initial temperature distribution in cylinder;

Silsi, 1), source function on Sj;

Ll @, t), heat flux per unit time on surface z = —b of cylinder;

fa(r, @, 1), heat flux per unit time on surface z = b of cylinder;

Sfa(g, z, 1), heat flux per unit time on surface r = a of cylinder;

Gen(r, p), Green’s function defined in equation (52);

Ii(x), modified Bessel function of the first kind of order £ and argument x;
i, 1,2,...,4;

Ji(x) Bessel function of the first kind of order k and argument x;

J» 0,1,2,...4;

K, thermal conductivity of R;

Ki(x), modified Bessel function of the second kind of order k and argument x;
k, m, n, 0,1,2,..., «;

ni, outward normati of S;;

P, point in R;

Q(P, 0, internal heat source function per unit time per unit volume of R;
o, g, z, t) internal heat source function per unit time per unit volume of cylinder;
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q,
R:

ry

S,

St,

Siy

(P, 1),
T*(P, t),
Tos(P, t),
T3P, 1),
Ti(P, t),
To(P, 1),
Tav(t)y

(r, @, z, 1),
Too(r, @, z, t),
Toi(r, @, z, 1),
To2 (r, @, 2, t),
Tos(r, @, z, 1),
TDO(’) Z, t)’
Too(r’, ®, f),
TOI(", z, t),
Too(r, z, 1),
Tos()‘, z, t),
Tos(r, @, t),
I(r, 1),

I(z, t),

Toolr, t),
Tm(z, t),
Toz, ),

Tos(r, 1),
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number of co-ordinate surfaces of R;

homogeneous, stationary region in P-space;

radial space co-ordinate in cylindrical polar co-ordinates;

boundary of R;

it co-ordinate surface of R;

point on S;;

unsteady temperature distribution defined in equations (1), (2) and (3);
unsteady temperature distribution defined in equations (1), (2°) and (3),
with T(P, t) replaced by T*(P, t) in equations (1) and (3);
pseudo-steady temperature distributions of order zero, defined in equa-
tions (19) and (20);

pseudo-steady temperature distributions of order zero defined in equation
(5);

unsteady temperature distribution defined in equation (24) or (25);
unsteady temperature distribution defined in equation (28);

average temperature of R at time ¢;

unsteady temperature distribution defined in equations (29), (30), and
(31);

pseudo-steady temperature distribution defined in equations (39), (40),
and (41), and given by equation (54);

pseudo-steady temperature distribution defined in equations (56), (57)
and (58), and given by equation (62) or (70);

pseudo-steady temperature distribution defined in equations (73), (74)
and (75), and given by equation (76) or (78);

pseudo-steady temperature distribution defined in equations (81), (82) and
(83), and given by equation (84);

axisymmetric pseudo-steady temperature distribution given by equation
(55.2);

two-dimensional pseudo-steady temperature distribution given by
equation (35.b);

axisymmetric pseudo-steady temperature distribution given by equation
(63.a) or (7l.a);

axisymmetric pseudo-steady temperature distribution given by equation
(77.a) or (79.a);

axisymmetric pseudo-steady temperature distribution given by equation
(85.3);

two-dimensional pseudo-steady temperature distribution given by
equation (85.b) or (99);

one-dimensional unsteady temperature distribution given by equation
(86);

one-dimensional unsteady temperature distribution given by equation
(87) or (98);

one-dimensional pseudo-steady temperature distribution given by equa-
tion (55.c);

one-dimensional pseudo-steady temperature distribution given by
equation (63.b) or (71.b);

one-dimensional pseudo-steady temperature distribution given by equa-
tion (77.b) or (79.b);

one-dimensional pseudo-steady temperature distribution given by equa-
tion (85.c);
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é/ct,
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A >0,
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time variable;

volume of R;

axial co-ordinate in cylindrical polar co-ordinates;

Kronecker delta;

partial derivative with respect to time;

unsteady temperature distributions defined by equation (26) or (27);
thermal diffusivity of R;

eigenvalues defined by equation (10);

eigenvalues defined by equation (6);

eigenvalues defined by equation (32) and given by equation (34);
eigenvalues determined from equation (35);

parameter and variable of integration with respect to time;
eigenfunctions defined by equation (10);

eigenfunctions defined by equation (6);

eigenfunctions defined by equation (32);

angular space co-ordinate in cylindrical polar co-ordinates;
temperature functions defined by equation (16) and by equation (37) for
q=73;

gradient operator in P-space:

Laplace operator in P-space;

[e( et} ox [2( )/or]; |
finite cosine transform of { }(r, ¢, z, t) defined as 'J‘ﬂ{ Wy @, oz, t)

cos k(p — ¢) dg;

finite cosine transform of { }(r, ¢, z, t) defined as J { ¥r, @, z,t) cos (nm/2)
{1+ (z/b)] dz; a

finite Hankel transform of { }(r, ¢, =, ¢) defined as | { }(r, ¢, z, 1)
Ji{pgmr) rdr. 0

INTRODUCTION

IN A RECENT PAPER [!] the author presented a general study of unsteady temperature distributions
in finite regions of arbitrary geometry, under a wide variety of time-dependent boundary conditions
and heat sources. The general solution was given in terms of a set of pseudo-steady temperature
distributions and a uniformly convergent infinite series. It was remarked there that when all the
boundaries of the finite region in question are simultaneously subjected to prescribed heat flux
conditions, these pseudo-steady solutions do not exist (except in a trivial case of no practical sig-
nificance) and therefore special attention must be devoted to the case of the boundary conditions of
the second kind. It is the purpose of the present paper to present a study applicable to this important
case of permanent interest to engineering science, and thus to complement and supplement the
previous treatment given in [1].

STATEMENT OF THE PROBLEM
The unsteady temperature field in a stationary, homogeneous, isotropic region R, with thermal
properties independent of temperature satisfies the heat-conduction equation

1 8T(P, 1)
at

9

V2T(P, 1) + 71<Q(1>, t) = , PinR, t>0. (1)

Let the boundary surface S of R be composed of continuous co-ordinate surfaces Si, ¢ in number, in a
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conveniently chosen three-dimensional co-ordinate system. The boundary conditions of the second
kind can be expressed as
eT(P, 1)

o = fi(si, ), PonS; >0, 2)

K

and the initial condition is given by
T(P,t) = F(P), PinR, t=0. 3)

For ease of reference and comparison, the solution of the general problem treated in [1] where (2) is

replaced by
T*(P t)

Ai(si) + Bi(s) T*(P, £) = fsi, 1), PonSi, >0, )
is also presented here as follows:
TP, t) = L 0P, 1) + Z Ch, #2(P)exp (—x Ay t){J¢> (P) F(P) dV } \
_:—Q‘O[M (P) T3P, 0)dV + fexp(m\*’q-) M (P) T3P, ) dV dr]}, Jlk( ®
where
VETS(P, 1) + %‘%’ Q(P,1)=0, PinR, (5.2)
Ai(s) —2—~ "T°’(P 2 + Bi(s) TP, 1) = 8 filsi, 1), Pon Sy, (5.5)
V24 (P) + AC 4% (P) =0, PinR, (6.2)
A(si % ( ) + Bi(s) $*(P) =0, PonsS, (6.b)
and
o= | #par. ™
An alternative expression for T*(P, t) is giveany
TP, 1) = ZO Ti(P, 1) + z C* ¢ (P)exp (—xdo 1) {J;%(P)F(P)dlf
- ;m[ J¢ (P) Q(P,0)d¥ + ? j £ fits 0 a5 (@4.5)
—lej exp (A% T)[ j $5(P) O(P, ) dV + Z j bn (S‘)) filss, )dSi] dr}

The temperature distributions T3P, ¢) defined by the system (5) are called pseudo-steady solutions
of order zero and satisfy the relations

* * _ 1 *
J “(P) Tiu(®, Khilsém(m o, 1) dv, 8.2)

R
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I (s
j SPTHP DAV = j ‘Z((’)) s, dSs, j #0. (8.5)
R Sy
Under the restriction that Bi(s) is not to vanish for all i simultaneously, the expressions (4) constitute

the solutions to the system of (1), (2°) and (3), and T*(P, ¢) satisfies the relation

q
d * *2 % *
T J ¢ (PYT*(P, t)dV = «X}, j ¢7.(P) [ z Ty, (P, t) — T*(P, t)] dv. )
R R j=0
In the case where Bi(s;) = 0 for all i simultaneously, namely, the case of boundary conditions of the

second kind, the system of (1), (2’) and (3) reduces to the system of (1), (2) and (3). It was noted in
[1] that in this case the pseudo-steady solutions T (P, t) defined by the system (5) do not exist except

when
ft(Sh t)

Soj J oP, 1) dV + K&y “‘

i.e. when the net rate of total heat transfer throughout the volume is zero. Therefore, for arbitrary
source functions, Q(P, 1) and fi(s, ¢) the solution T(P, t) to the system of (1), (2) and (3) cannot be
obtained from the solution T*(P, t) to the system of (1), (2) and (3) as expressed by (4).

SOLUTION OF THE PROBLEM
For the problem at hand the appropriate eigenvalue problem is the one defined by

V2ém(P) + A2, $m(P) =0, PinR, (10.a)
Gén(f) _ 0, PonS, (10.b)
on;

and the normalizing coefficient Cp, is given by

1
.= J«#;(F)dV. (1

R

It was shown in [1] that the eigenvalues A, and the eigenfunctions ¢, (P) defined by the system (10)
satisfy the relation

A= Cm [ [V ém(P)P dV. (12)

It follows from (12), that Ag = 0 is also an eigenvalue of (10) corresponding to the eigenfunction
$9 = constant # 0 (m = 0).
In terms of the eigenfunctions ¢x(P) the following expansion can be written:

q o q
T(P, 1) = 2 Tos(P, 1) + X Cm ém(P) | ¢m(P) [T(P, 1) — X Toy(P, 1)] 4V, (13)
j=0 m=0 R 7=0
where Toj(P, t) are the pseudo-steady temperature distributions in the case of the boundary con-

ditions of the second kind, and are to be defined presently. From the system of (1), (2), (3) and the
system (10), it can be shown that for Ay = A0 = 0,

d
FJ:T(P HaAv = = H O(P,1)dV + S‘ j filsi, 1) dS;} (14.2)

tlS,
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the integration of which, along with the use of (3), gives

¢

j T(P, 1) dV = JF(P)dVT : J [ [ o, ) dv + DS filsi, )dSJ (14.b)
s = oo || aenars 2 |
In view of (14.b), expression (13) is rewritten as
d )
ren = [ AR+ > 100+ Tu,0) |
- = . "o
l
- ? Cmpm(P) J ém(P) [T(P, t) — Z Toi(P, l)] dv, i
m=1 R j=0 J
where
24(t) = [50; J J‘ Q(P, r)dVdr + & J Jf;(s;, 7)dS; dr}. (16)
0 R 0 5
From (14.b) and (16) it follows that
,
?.Qj(t)—- > I T, dy — [ F(P)dV, ‘
2 % (17
= Tavlt) — Tav(0). |

. q . . .
Thus, the physical interpretation of X £24(r) is that it represents the difference between the space-
j=0
average temperature at time ¢ and the initial average temperature of region R.
In order to determine the differential equations satisfied by the To;(P, t) functions it is required

that they satisfy

1
J $m(P) Tos(P, ) dV = x5 [301 J ém(P) Q(P, t)dV + &y J bm(si) fi(se, 1) dS;}, Am # 0. (18)
R " R i
It should be noted that in writing (15) it has been tacitly required that
{ Tog(P,t)dV = 0. (19)
R

Now the Laplacian V2 is applied formally to both sides of (15) to yield, in view of (10.a), (18) and (9)
as applied to T(P, t) and Tos(P, t), the equation

VET(P, t) = V2 Tos(P,t) + Cn cﬁm(P)d dm(P)T(P, t)dV.

Using the expansion formula (13) with To;(P, ¢) replaced by zero, and taking into account (14.a) and
(16), the above result becomes

1 eT(P,t 1 df4(t
V”T(Pt)—-S‘V’Toj(Pt)—}- ”(t) s d’t()

} 0 j=0

b
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which, in view of (1), reduces to

i[v* ToP1) + 2 QP 1) — | ’(”] =0.

Thus the pseudo-steady tejrx:l;erature distributions To;(P, t) satisfy the differential equations
V2 TosPy 1) + 2 o P, = ! d“?;(’), PinR. (20.2)
It is further required that they satisfy the boundary conditions
KEO;%”—I) = 8yfilsi, 1), Pon Si (20.b)

Using (10) and (20), it can be shown that the To;(P, t) functions satisfy (18). By utilizing the Gauss
Divergence Theorem it can also be shown from (20) that (19) is satisfied.

The pseudo-steady solutions Tos(P, t) comprise essentially a set of fictitious steady-state tempera-
ture distributions in which ¢ is regarded as a parameter. They are to be determined from the system
(20}, subject to the conditions of (19). These should be compared with (5), the defining system for
T3P, ). In view of (18), the series expression for Tof(P, ) is

Tos(P, 1) —~»1~1€ Z AZ > dm(P) [So; J' dm(P) Q(P, t)dV + 8 J bm(si) filsi, 1) dSi] @n
=1 R 8¢

1t should be noted that although A¢ = 0 is also an eigenvalue of (10), expression (21) does not include
the term corresponding to m == 0, since Tos(P, t) satisfies (19). If the Ty;(P, ¢) functions can be
determined directly from (20) and (19), the above eigenfunction expansions for Tos(P, t) constitute
a set of summation formulas, and the similar other concluding remarks of [1] apply mutatis mutandis
to the expression @n.

Next, (9) is integrated with respect to t, after replacing ¢, (P), T*(P t) and T3(P, ¢) by qu(P)
T(P, tyand Tq,(P, t), respectively, and the result introduced into (15) to give the following expression
for the temperature distribution T(P, 1):

-

T(P, 1) = J F(P)dV + Z [Q4(t) + TofP, 1)]

R i=0

+ Z Cm $m(P) exp (~—¢cz\;§,z){J~ dm{P) [F(P) — i Tos(P, 0)} dv >(22.3)
m=1

- Z jexp (kA% 7) Jg&m(i’) To(P, D) dV d:—} J

An alternate expression obtained by substituting (16) and (18) in (22a) is as follows:

(P, 1) =-1,; i F(P)dV-p-KiV j [i o, ) dv + zq: jﬁ(si, 7) ds,] dr ]

+ Z ToP, 1) + Z Cre (P exp (— 2%, :){qumm F(P) dV @)

m=1
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(v
A9
[eY

(22.b)

i=1 §

~ 7 .
B 1€1\‘m H $m(P) Q(P,0) dV + z J $m(s:) fils:, 0) dSl}
R i

h KAZ + . : : i
-| e—-——"plfl\._; n?) H bu(P) 0P, )4V + > j buls) filses ) d&-] drr.

R i=1 S

e —

In this second solution form for T(P, t), the source functions Q(P, ¢) and fi(s:, t) appear explicitly.
Direct substitution shows that the solutions (22) satisfy the differential equation (1), the boundary
conditions (2) and the initial condition (3).

REMARKS

In the derivation of (22) it is tacitly assumed that the source functions F(P), Q(#, t) and fi(s;, ¢) are
integrable with respect to their independent variables. To guarantee the uniform convergence of the
infinite series in (22) it is further assumed that F(P), Q(P, t) and fi(s;, t) possess continuous first and
second order partial derivatives with respect to space variables, and that the time-dependent source
functions Q(P, 1) and fi(s, ¢) possess continuous first order partial derivatives with respect to .

The difference between the solutions to the system of (1), (2) and (3) as expressed by (22), and
those to the system of (1), (2), and (3) as expressed by (4) can be seen by a comparison of the two.
The difference is not only due to the explicit presence of the additional 24(¢) and (1/V) | F(P)dV

R

terms in (22) but also due to the implicit effect of the £2;(¢) terms on the solutions (22), since the latter
also appear, as fictitious volume sources, in the differential equations (20.a) for the To;(P, ¢) func-
tions. In addition, the zeroth order pseudo-steady solutions To;(P, t) are subject to the conditions
expressed by (19) without which they are indeterminate. As shown by (17), the additional terms of

v | Fevar+ i@(z)

appearing in (22) represent the space-average temperature throughout region R and constitute a
characteristic feature of the solution of heat conduction equation in a finite region the entire surface
of which is subjected to boundary conditions of the second kind. This is of course obvious from the
physical nature of the problem.

As in the case of [1], the general solution (22) can be expressed in a more compact form as

or’

e =10+ > o0+ - [ [P0 el ey
i=0 0

In this expression T1(P, ¢t) is the solution of

1 6Tu(P, 1 _
ViT(P, t) =—0—1£ ), PinR >0,
K ct
with
oT1(P, t
KZ ‘C(n ) _0, Pons, >0, L (29)
and
TP, t) = F(P) — 3 Tos(P,0), PinR, =0,

Jj=0 J
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and is given by

1 N :
TP, 1) = 7 XF(P) dav + S\ Cr dm{P)exp (— KA?if)J\qu(P) {F(P) — Z Toi(P, O)} dv,
F 1 R j=0
(25.2)
or
1 N )
SIEDES f F(P)dV + S\ Com m(P) exp (—x A1) H ém(P)F(P)dV
s
8 m o > (25.b)
1 )
=g [ = 0.0 v+ > [ ato0 s 0y asi]
) " R i=1 8§ J
Similarly, ©;(P, =, 1) are the solutions of
e ]
0, 7 1) =L 2B ping s,
K ot
with
cO
Kﬂ%}'—’l—@o, PonsS;, >0, - (26)
and
8;(?, 7, t) = ToyP, ), PinR, t=0, ]
and are given by
OP, v, 1) = ZIC,,. Pm(P) exp (—xAt) [ ém (P)Toi(P, 7} dV, (27.a)
me== R

or

< — kA2
6,700 = > CnbnP) 2250 [ [ n(P) 0P, ) 0 + 8y [ i) s ) 5] 270)

me==1 R 8
It should be noted that use has been made of (19) in writing (25) and (27). Thus, [T1(P, t) — Ta{0)]
and @4(P, =, t) constitute entirely transient solutions composed of exponentially decaying terms, and
satisfy homogeneous differential equations and homogeneous boundary conditions. It follows from
(23) and (25) that the quasi-steady temperature distribution is given by the asymptotic behavior of

8O4P, +', t — 1-):‘ d

TSP ) = 5 [ F(P)dV + Z {Q,m + ToiP, 1) — j [ = } %)

for large values of time ¢.

APPLICATION

By way of 1illustration of an application of the foregoing results, a general problem that has not
been solved before will now be considered. The problem is the determination of the unsteady
temperature distribution in a right circular solid cylinder of finite length, with its entire surface
subjected to boundary conditions of the second kind. Using cylindrical polar co-ordinates, r, ¢, z,
and choosing the z-co-ordinate along the geometrical axis of the cylinder, the region R is defined by

0<r<a; 0< o< 2m; |z] <b.
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Evidently,q = 3. Leti = 1, 2, 3 refer, respectively, to surfaces = = —b, = b and r = a of the cylinder.
Then, (1), (2) and (3) yield respectively,
¢ 1e 1 ¢& c? _leT(r, e, z,1)
(TZT;E_r—{—ﬁ q;+E,,)T("¢,~»f)+KQ("%-,T) PR Pa—
O<r<a 0<¢e<2n, |zl<b, t>0), (29)
oT(r, p, 2, ¢
— K_.(’_%L) =filnpt), O<r<a 0<p<2r, z=—b t>0), (30.a)
oT(r, @, z, ¢
K(r'—g;—)zfg(r,cp,t), O<r<a 0<¢<2m z=5b 1>0), (30.b)
oT(r, g, 2, t
—-——(r ;’i ) =filp,z1), (r=a 0<g¢<2m |[z7/<b 1t>0), (30.0)
I(r,g,z,t) = F(r,g,2), 0<r<a 0<¢<2n |7/<b =0). 3D

The eigenvalue problem corresponding to (10) is expressed by

@& 1ae 1 & e
(5;2+}6—r+,-8¢9+8zo+ km)«ﬁmn(rcr,-)-o Osr<a 0<¢<2m [<b)
(32.a)
8 @ 2) \
Bl 02 o 0<r<a 0<p<2n 1= -b),

o¢ )
JﬂégLZ):O, O<r<a 0<¢<2m z=), P 2D
Do #.D 0, ¢=a, 0<p<2n |]<b)

4

The eigenfunctions of (32) well-behaved at r = 0 are obtained in terms of two triple index sets as

(Jk(,umr)cos kg cos — 5 (1 -+ b) )L
Piemalr, @, 2) = < k,m,n=0,1,2,..), (33)

'ij(ymr) sin ke cos ’-'22 (1 -~ l_)) J

N

and the eigenvalues Axmn are given by

Nomn = i (Z—;) (34)
where augm = 0 is the mth root of
(kema) Ji(piema) = 0, (35.2)
or of
(krm@) Je+1(kema) = k Je(uxma), (35.b)

and the prime in (35.2) denotes differentiation with respect to the argument. It is to be noted that for
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k # 0, pkm = pko = O is not an eigenvalue of (32). Zeros of J(x) for orders 0

From (11) and (33),

27

b
cos kg , T
J J 0 {Geag o5 (14
0 -

@ b(1 + S0) (1 + bno)[ (;k%)] J(uima)

)rdrdqu’

Q—I [X)

Ckmn

O(__—ﬁg

l\)! B

Since V = 2wa2bh, (16) yields

t a 2x b
1 ¢ a
Q¢(t) = b ;—< J. j Qo(r, ¢, z, ) rdrdp dz d-,
00 o
t o
() =5 ;( j filr, g, 7) rdrdg dr,
29 %
¢t a 2=n
1 k [
Q?(t) = Ira’b : k f?(r, ®, T) rdr dtp dT,
D00

27 b
J J Sf3(p, z, 7) dp dz d.
0

From (22.2), (33) and (36), it follows that

a b
TC,020) = 5= J j Fp 7 drdpdz + > (00) + Tofr, .2,

7=0

og_——,:.m

_2_ §‘ %‘ Ji(pemr) cos (nmf2) (1 + z/b) exp (—« AL, .t)
matb Lo Ly Ly (1 + 3x0)(1 + 8no) [1 — (k/uema)?] JE(1kma)
(k=m=n#0)

3

Jie(premr) cos ’—;: (l + Z) [F(r, @, z) — z Tos(r, ¢, z, 0)] rdrdz

b - i=0

ot—
—N
ce—a

St |

a b
exp (kA2 .7 J I Jie(prmr) cos = (1 + g) Tos(r, 9", z, 7) rdrdz dT}

i=0

cos k(g — ¢) d¢".

539

< k < 20 are con-
tained in [2], and for orders 21 < & < 51 and 0 < x < 100 are tabulated in {3].

1\
’L (36)
|
J

(37.2)
(37.b)
(37.0)

(37.d)

> (38.a)
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Similarly, from (22.b), (33) and (36) it follows that

o

Sy

1 a
Trg. 20 :zmu;j
0

0 b )=0

2 i ? ? Je(pamr) cos (nm/2) (1 + z/b) exp (—A2, 1)

Taath £, L, L, (T 50 (1 800) [T — (fpema )] T (kma)
T
2= a b i Q( , 0)
hm z r z,

,[ { J J Jilprmr) cos (1 + B) [F(r,(p’, z) — ————K—i,mn—J rdrdz
0 0 —b

a

! al a
TR J Telpenr) Lfilr, 5 0) + (= 1) folr, ¢, 0)] r dr — —f(xtim )
t

b
nm z i
J cosf( + 5) Salp',z,0)dz — e J exp (kA7)

kmn

[ J J Ji(purmr) cos n?n- (1 + [::) o(r, ¢, z, ) rdrdz + JJk(ykmr)

—-b 0

LA @, 7 + (=D f(r, @, 7] rdr + a Ji(uina)

b
J cos n{ (l + ;:7) fa(r, @', 7) dz] d‘r} cos k(p — @) dg'.

-b

J Frp.2)rdrded:z + T[.O(t)—r—To](r 7,2, 1))

- (38)

~

Thus, once the pseudo-steady temperatures Tos(r, ¢, z, t) have been determined, the expressions (38)
together with (37) give the unsteady temperature field in the cylinder. The Tos(r, ¢, z, t) functions are

determined by the repeated application of one-dimensional finite integral transforms.

Determination of Too(r, @, z, t)

From (19) and (20) with j = 0, the differential equation and conditions defining Too(r, ¢, z, t) are

(0<r<a, 0<g <2m, |27 <)),
—KM’E—;&E’—I) =0, O<r<a 0<g<2m z=—b),
KT;(L("ié(gL__z’t) =0, 0<r<a 0<¢<2r, z=0),
K@’(_”a;i_’z’_’?:o, (r=a, 0<gp<2n |z<b)

2

b
J Too(r, ®, z, 1) rdrdp dz = 0.

De—,
o—,1¥

1

I> (39)

J
(40.a)

(40.b)
(40.c)

@
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In order to solve Too(r, ¢, z, t) from the system of (39), (40) and (41), first a finite cosine transform
is defined as

Toolr. k, 2, t;9") = ‘Jﬂ Toolr, @, z, 1) cos k(p — ¢") do. 42)
[
The inverse transform of (42) is given by
1 S Tg(f ]" z, 1 ‘Ef)
Toolr, @, 2.1) = = Z Bentiin )

The equations (39) and (40) are now transformed by (42) to give

dQo(?)

(32 12 Lk &2 1!
de ?(44)
J

T o e a) Tk 2 590 + g 00k n ) = e S

O<r<a, |7 <b),

GT l,"(yz;t;(;‘ [ 4
_K___Ogg_______._.._)—- 0’ (0 < r < a, - — b), ( S‘a)
GT l,it’-’l;q’ B — 4
K 03( )-—‘_ 0, (0 < F < a, I = b), ( S'b)
82 ()',k,.:,f;qy 4
K 0 ( ) 0, (r =g, I?l < b). ( S.C)

or

In order to determine Too(r, &, z, ¢; ¢’), another finite cosine transform is defined as

f@ﬁ(r’ k’ n,t; w’) =

é.c"""'“:o-

o(rkthr)cos (1—}- )dz, (46)

the inversion formula for which can be expressed by

mz oolr, k, n, t; (p) n-r(1+ ) @)

1
z’ (1 + Sﬂt})
n=0

Pl

Toolr, k, z, t; @) =

The application of (46) to the system of (44) and (45), along with the use of the Gauss Divergence
Theorem in the z-co-ordinate, results in

c? 1 ¢ k2 n2al
[éﬁ+; e—’:—(;—a+ a5 )} ?ou(f,k n,t; §D)+KQ(fkhf (}’})
4nb dQy(t
= s 50 do( ), b (48)
t
O<r<a),

sToolr, k, 1, t; ¢
KaTog(r, nt; @)
or

=0, (r=a 49

HM.—2M
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In terms of transform notation, (41) can be rewritten as

[ Too(r, 0,0, 7; &) rdr =0. (30)

D, 0

The solution to the system of (48) and (49), well-behaved at r = 0, is

r a ]
= 1 =
15 9) =% | | Genlon 8o 6 90+ | Guntrs 9 8o komts @) 030], | (1
0 r !
|
(k =n #0), j
where
_ Ii(nmr/2b) nwp\ , (nrra nmp\ ., nrra) )
it ) = o | (3) 4 (F) — # (5) 2 (F) o
in which primes indicate differentiation with respect to the arguments and
tim (Geatr, ) = g (5] [() +(5) ] & =0 (2.5

For k = n = 0 the solution to the system of (48) and (49) well-behaved at r = 0 is determined by
use of (50) and is given by

= 1
Too(r’ 03 01 t’ ‘P’) = 272

ot

0*(p,1) p*dp +f 0*(s, 1) 1n( )Pdp +f 0*(p, 1) m( ) odp,

where

o*(r, z)_k 3, 0,0, t; )—i’il-’d‘(f;t(’)

The above expression for Too{r, 0, 0, ¢; ¢’) can be rewritten as

b a r )
2+r2 3

J J T 2% Z) Q(”"”’Z")PdP‘*'J‘ In ( ) Qp, 9,2, 1) pdp ||

- 0

%(51 b)

fOO(ra 09 0’ t ¢I) = T{

[
e e 1)

+j in () Qe g 2.0) 5 dp}mp dz.

r

| N

If Q(r, @, z, t) is independent of r, (51.b) gives foo(r, 0,0, t; ¢’) = 0, as expected. This serves as an
independent check on (51.b). The combination of (43) and (47) yields for Too(r, ¢, z, t) the expression

1 -~ Too(rknttp) n .
Toolr @ 2,1) _W_bz Z TF ox0) (L + 8000 ° (1 + ) 53)
k=0 n=0




ON THE THEORY OF CONDUCTIVE HEAT TRANSFER 543

Introducing (51) into (53),

2r b a ( w
1 (PP +rr 3 : 4 '
Toolr, ¢, 2, 1) = 4~ bKJ J {J (”—275——3) Q(p,w,z,t)pdp+Jln(;) Qp 9, z,1) pdp
—b 0 ’
. . | ) 22 b r
+jln (;) Q(P,%Z")Pdp}d(”d“ 4; bKZ JJ{ (‘_’)
: k=1 0 ~b

|
+ (‘:)'”} J (g)kQ(P, @, z,t)pdp + (5/ J [( ) (g)k] 0(p, ¢, 2, t)pdp} L (54)

r

o Im b
& =/2) (1 + z/b)
cos (i d dz + bK§§°°S('(ZI/+)(bL;;z/ JJ{ijn(p,r)Q(p,w’,z,f)PdP
0 —b 0

k=0 n=1

+J Gen(r, p) Q(P,(P,-,t)pdp}cos k(p -—fP)COS ( + 7 )dq«’ dz.

r /
It is noted here that in determining Too(r, &, z, t; ) from (44) and (45), a finite Hankel transform
can be applied to (44) and (45) instead of the finite cosine transform of (46), and thus an alternate
expression can be obtained for Toolr, ¢, z, t). This procedure is illustrated in the determination of
Toi(r, ¢, z, t) and Tos(r, ¢, 2, t), and the corresponding expressions are given by (70) and (78),
respectively.
From (54), the two-dimensional cases of pseudo-steady temperature distributions can be readily
written down. Thus, if Q(r, ¢, z, t) is independent of ¢, the problem becomes one of axial symmetry
and only the terms corresponding to k = 0 contribute to the solution expressed by (54). Hence,

b a . r ) 1
2 2 3
TOO(ri z, ’)_:“-2%(“» { J (P_i‘)_r' _'a) Q(P,Z, t)PdP _L_J In (g> Q(P7 z, t)pdp

2a>

- nmw z
In Q(p,-,t)pdp}dz—{—bKZ COS = ( b)

J Gt p)Q(p,zr)pdp}cos (1 + )

r

+ j { j Gonlp,1)Qp, 2, 1) pdp 1 (55.2)

+

Ve g YV oe———n

J

On the other hand, if O(r, ¢, z, t) is independent of z, there is no axial conduction and (54) reduces
to

T 3

1 f : 3
Toalr, 3, 1) ——KHJ(” o —1) Qo0 s J—jln () 0.0 e

T g a5 T+ (1@ v o

r k=1

+ (2)"f[(§)k+(p) ] O(p, ¢, t) pd }?S_k%__j_’_)d
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If O(r, ¢, z, t) is independent of both ¢ and =, (54) simplifies to

1 3 (2 r2 3 i a ' .
Too(r, t) = 1—5 J( g 3/) Q(p, t) pdp + J In (—r) O(p. t) pdp + J‘ In (;),) O(p, 1) p dp/ﬁ-
0

L 4
0

r

If, in addition, Q(r, t) is independent of r, (55.c) gives
Too(t) = 0. (55.d)

Determination of Toy(r, ¢, 2, 1)
From (19) and (20), with j = 1, the differential equation and conditions defining Toi(r, ¢, z, t) are

e 1e 1 e 2 1d2,(1)
("e?éT;‘eﬁre,pﬁw)Tm(r g5t =- g l 6
O<r<a 0<g<2m |z|<b), )
cToi(r, @, z,t
—Kf—m—(—r—a:p—) =l t), O<r<a, 0<g<2m z=-b), (57.a)
cTow(r, @, z, t
gD O<r<a 0<g<2m z=0b) (57.5)
T ,Z, b
—'1(—’;—) 0, (r=a, 0<p<2r |7<b). (57.0)
a2nd
11y T01(r,<p, zt)rdrdpdz =0 (38)
00 —
The transformation of (56) and (57) first by (42) and then by (46) leads to the following system:
g 19 k2 nEn? 4nb di(e)
(15— (@) ot ki) + g itk i) = Za0am =52, | o
(0 sr< a))
8f L k,on t @
K“I(’e—r”q)) =0, (r=a). (60)

The solution to the system of (59) and (60) is given by

- 1 r _ a _
Toi(r, k,n, t;9) = % HGkn(p, r) filp, k, t;9) pdp + j Gia(r, p) file, k, t;97) p dp], (61.2)
Q r

(k=n=0).

For the case of £k = n = 0, the solution is obtained, after utilizing (58), as

2r

Tou(r, 0,0, t; ¢) =71<Hj[(p22':2 )fl(P, @, t) pdp *j ( )fl(p, @, t) pdp 1{
0 o }(GI.b)
+ f 0 (2) siter 9. 0) o do} e, jl

r
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Introducing (61) into (53) as applied to Toi(r, ¢, z, ¢), the following expression is obtained:

.ZH'
P2 + r2

Lo 3
TOI(r’¢’Z’t)=4ﬂbKJJLJ( 2[12 '_4")f1(P,'F”t)PdP+
¢ 0

2

e [ (G r paofas e SO+ @] (0) 5000

a

16 s =2

r

cos (nm/2) (1 + z/6) [ [ | ’
ﬂbKZO Z (1 4 8o) 6[ [ij"(P’ r) fi(p, @, 1) pdp

Jckn(r, D) file, 7, 1) dp] cos k(@ — ¢) dg.

In (c—:) Silp, g 1) pdp

Qe v

For the axisymmetric case (62) reduces to

Tou(r.2,0) = g ” (%’— )fx(p, ) dp + j in () Ao 0 0

r

In ( )fx(p, t)p dp] + bKi cosilzlT (l + g) H Gonlp, ) filp, 1) pdp

_E-

+ | Gonlr, p) fite, 1) dp],

Ve Ym0

If in the above expression fi(r, ¢) is independent of 7, then in view of

r i 2h\2
J Gonlp,r) pdp + j Gonlr, p) pdp = (——) .
0 T

hn

(63.a) becomes simply

e t) = (;)Wk(t)}_, 12 f';(l +g).

n=1

545

> (62)

f‘ (63.a)

(63.b)

It is instructive to derive an alternate expression for To1(r, ¢, z, t) given by (62). For this purpose a

finite Hankel transform of order k is defined for Toi(r, &, z, t; ¢') as
Tosm, k, 2, t; ¢°) = | Tou(r, k, 2, t; @) Te(ukmr) r dr.
0
The inversion formula for the above transform is

Toa(r k,z,t;9) = X Dim Tor(m, k, z, t; ") Je(uemr),
m=0

)

(65.2)
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where
1 ! s a ko2 . -
Dem J Jilpkmr) rdr = 5 [l — (m) J J i mkma). (63.b)
0

In (65) it is to be noted that since pgp = 0 is not an eigenvalue for & == 0, the summation starts with
m =1 for k # 0. For & = 0 the summation starts with m = 0, since ugo = O is actually an eigen-
value. If now the system of (56) and (57) is transformed by (64), following its transformation by (42).
the following system is obtained:

2 dQi(e

(52— i) T k2590 =" b0 30 S5, <) (66)

ET’:" Jhk, ot g 2
—K °“m87 V) fim b w), (o= —b), (67.2)

8]2' Sk, 2zt
K Mm& P)_o, (=b). (67.b)

In terms of transform notation (38) can be expressed as

f TOI(O 0’ ot @ ) dz = . (68)

The solution to the system of (66) and (67) is given by

cosh pugm (b —

To(m, k, z, t;9) = Ko onb 3 #kmb) fl(m k, t;9),

(k = m # 0). (69.2)

For the case of pkm = poo = 0, the solution is obtained, after utilizing (68), as

2

Tol(O 0,z ¢ (p)———— [E-——Z——)— bo] £1(0,0, £; 9. (69.b)

The result of introducing (69) into the combination of (65) and (42) as applied to Toi1(r, ¢, z, t). is

2

1 b b2
Toi(r, @, 2, 1) “W{(—j—l *S}JA Jﬁ(’a% t) rdrde

Jie(pemr) cosh [prm (b — 2)) _[ fl(r @', t) Je(pemr) cos k(g — @) rdr dg’
-n'aKL Z (70)

(1 + 3ko) [1 — (k/#kma)'-] (rkma) Jipema) sinh uimb)

Thus, (70) and (62) comprise two solution forms for Toi{r, ¢, z, ¢). They are both in the form of
double infinite series. For purposes of numerical computation, (62) is preferred to (70) since the
latter requires the solution of (35) for the eigenvalues urm, whereas (62) employs summations over
positive integer values of k and n. A similar alternate expression can be obtained for Too(r, ¢, z, t) in
the same way. If fi(r, ¢, t) is independent of ¢, (70) yields the axisymmetric case
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— 2

Toy(r,z, t) = Ti—k {9—4——-)— - ?] j Al )y rdr

’ 0

5 2Jolumr) cosh [um (b — 2)) 5 Ailr, £) Jo{pmr) r dr
[

ak (pma) J2(uma) sinh 2umb) ’

m=1

-+

(71.2)

where the subscript £ = 0 in uem has been dropped. This expression should be compared with
(63.a). If Air, ¢) is independent of r, then since

TIo(umr) rdr =0,  (m #0),
(11

(71.a) reduces to

Ao — 22 B2
TO].(Z, f)—'gk‘[—a——“'g . (YI‘b)
From (71.b) and (63.b) it follows that
—_ 2 B2 2 —
L 42) ~%~=(2§) Z’%cos’;(l +g), 72)

n=1

which is the well-known Fourier expansion.

Determination of Tyelr, ¢, 2, 1)
From (19) and (20), with j == 2, the differential equation and conditions defining To2(r, ¢, 2, t) are

(gz'*‘;grﬁ-:—;é%-ké%) Tos(r, @, Z,’)=;lcd%t(t), 3
O<r<a 0<p<2n, |7l <b),

—Kﬁyﬁ%&fﬁ —0, O<r<a 0<¢<2n z=—b), (74.2)
Kfﬁ?%qﬂ’-fl’—) =filr, 9, 1), O<r<a 0<¢<2m z=24), (74.b)
K?z"?(—%?ﬁﬁ =0, r=a 0<g@<2r l7<b), (74.c)

j: if" j’bToz(r, @, z,t)rdrdpdz =0, (75)

The solution to the system of (73), (74) and (75) is obtained in exactly the same fashion as that used
for Toi(r, , z, t). The result is given by
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- (p> = 3 Cja
ToxAr, ¢, =, —;—— J { [ 37 3) falp, g, t)pdp + X In (—r) Slp, g t) pdp —
b 0 )

r

j n (g) Gl t)PdP} dp 4ﬂleZ j {[(;)h ~ (5;) k] J (g)kfz(p. Fo0)pdo +
1 o) =20
;;_K i i (—n CO(S1(’Z-T/2£)1 + z/b) f { Jr Gonlor ™) fior 1) p dp =

k=0 n=1 b 0

j Gealr, p) fo(p, @5 t) p dp] cos k(p — ¢") de’.

e

e e

For the axisymmetric case (76) gives

Tolr, 20 = 3% | j (Fpm ~3) e o+ j i () fter) 8o j in (2) 2.0 5 |

r

l - r 23
L Z (=1 cos S (1 + g) [ j Gon(os ) folp, 1) pdp + j Gon(r, ) o 1) pdp]. (77.)
n=1 [} r

In the one-dimensional case in the z-co-ordinate, (77.a) reduces to

bfs(t) (—1)” mf(l _1_7-)7)

Toaz, t) = (*) (77.b)

Similarly, through the application of the ﬁmte Hankel transform of (64), the following alternate
expression is obtained for Toa(r, @, 2, 1):

Zn

) b+2z2 b T
Toofr, ¢,z,t)—~m[(~7—)f—~] Jj or, g, t)rdrde + aKZ Z
o

k=0 m=1

Ji(ppmr) cosh [prm(b + 2)] j j“ Solr, ¢, t) Ji{pmr) cos k(e — ¢”) rdr dg’
g 0

- - 78
T T 5500 = Chlpema R Ciema) TE axma) SR (Zomb) (78)
The axisymmetric case is readily obtained from (78) as
2 fb+22 B |
TO(,,,t) W[T—_d] sz(r t)rdr
2 < Jo(umr) cosh [um (b + 2] § folr, ) Jo(umr) r dr
ak 9 (79.2)

me1 (ema) J¥(pma) sinh 2umb) ’
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and the one-dimensional case follows from (79.a) as

RO
TO‘Z(Z, [) = FE l:—z‘——’ - 3—] . (79.b)
The comparison of (77.b) and (79.b) gives the Fourier expansion
~\2 2 —1)» z
(b+ 2 b 2”) Z( b cs”zl’(1+[:)), (80)

which should be compared with (72).

Determination of Tos(r, @, 2, t)
From (19) and (20), with j = 3, the differential equation and conditions defining Toa(r, ¢, z, ) are

2 18 1 & &2 1 d2s(2) ]
(5'72+;2?—r+r26¢2+ )Toa(r(p,-,t)_K dt 81)
O<r<a 0<e<2n |7 <¥),
0 z
Toa(l';;]?, ) t) . 0’ (0 g r< a, 0 < w < 217, z = ——-b), (82-3.)
7 z,
% TOS(ré(,p’ t) =0, O<r<a 0<¢p<27 z=01b), (82.b)
oT A
KT BED_ pnn, r=a 0<p <2, |1 <b) ®2.)
} f j‘ Tos(r, %, z,t) rdrdepdz = 0. (83)
0 0 -b

As in the case of Too(r, ¢, 2, t) and Toi(r, ¢, z, ), the system of (81) and (82) is transformed succes-
sively by (42) and (46). The solution of the resulting system when introduced into (53) as applied to
Toa(r, @, z, t) yields the expression

Tos(r, ¢, 2z, 1) = 81K( )( ].fs(qv, z,t)depdz +7;7<(g) 2, (;:)k

k=1

 cos k(g — S Te(nmr/2b) cos (nm2) (1 + 2/b)

.}%(@ ,z,t) k d(P dZ + —)7< S _, Ik(n-n'a/Zb) n(l + 8):0)
k‘—O

w
Sy

St
[RE—

N
E]

|

\]
In the case of axial symmetry, (84) reduces to

.
1 /a\ [r2 To(nmr/2b) cos(rm/Z)(l-{—z/b) |
Tt ) = g (5) (72— H fie, 1)z KZ Fmal2) &
(85.a)
"
J

j fa(z, 1) cos

—b

S3lg', z, t) cos k(p — (p)cos ( + )d<p'dz.

b

,
l
|
? (84)
|
l
J

o
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If fa(g, =, #) is independent of z, there is no axial conduction and (84) gives

a {r2 D i a = [r\k i , (coskig —g) .
Toslr, ¢, f)=m(&§—§) f3 ((ﬂ)d’}"‘f‘g( z (5) Jﬁ(?s‘) T de". (85.b)
1]

k=1 0

If fa(g, z, 1) is independent of both ¢ and z, the problem becomes one-dimensional in the radial
direction, and (85.2) and (85.b) both reduce to

,»r?

1
Toa(r, )= 2% (53 -~ 2) J3(o). (83.0)

An expression alternate to (84) can be obtained for Tos(r, ¢, z, t) as in the case of Toi(r, ¢, 2, t) and
Tox(r, ¢, 2, 1).

This concludes the determination of the Toy(r, ¢, z, ) functions appearing in (38). In summary,
Toolr, ¢, z, t) is given by (54); Toi(r, ¢, z, t) by either (62) or (70); Toa(r, @, z, t) by either (76) or (78);
and Tos(r, @, z, 1) by (84).

Numerous special cases of heat-conduction problems, with boundary conditions of the second
kind, follow from the general solutions (38). As an example, suppose that there is constant flux at
r = q, the faces = == 4-b are insulated, there is no heat generation throughout the volume, and the
initial temperature is zero. Then, from (37.d),

2faxt

Q3(t) = Ra®

and from (85.¢),

Toa(r) = g‘z (; - %)

In (38.b) the only non-vanishing terms are those corresponding to k = n = 0, and (38.b) reduces to

0

T(r, 1) = 2u(t) + Toalr) — 22 Z exp (—xudt) Jo(emr )

Ka T Jo(pma)’
m=1
or
_2afsfkt 1 (r? 1 N exp (—xudt) Jolumr)
100 = 5 [+ al(mms) = 2 T ) 9

where, in view of (35.2), the eigenvalues pn, are determined from the positive roots of
- J(;(.U-ma) = Ji(pma) = 0.

Expression (86) is given as equation (1) on p. 203 in [4].

Another example that has been studied by several authors [5], [6], [7] is the one-dimensional flow
of heat in a slab one face of which is subjected to a heat flux given as an arbitrary function of time,
when the other face is insulated. To obtain this case from the general expression (38.b), it is sufficient

to let F(r,p,z) = F=const,, Q(r, 9, z,1) =0, A(r, ¢, 1) = 0, fa(r, @, t) = fo(t), falg, z. £) = 0 in
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(38.b), whereby the only non-vanishing terms are those corresponding to k = m = 0, that is
pem = pop = 0. Thus, (38.b) yields

T(z,t) = F + Q(t) + Too(z. 1) ——4,% g———”i—)fcos'—g (1 +g) exp (—';—z—;zxt) [fz(O)

n= l.

t
+ j exp (% :c-r) f2(7) df].
From (37.c), °

20) = 5z | 0 8

and Toa(z, 1) is given by (79.b). Thus,
¢ ]
b 4 2 b2 alt
160 = £ gy | ar s+ [ 5] |
y

1;-‘2—1;( i (—};Xcosfz’l (1 +g) exp(—%zg—:xt) [fz(O) + .f exp (W )fg(‘r) d-r]. E

The equivalence of this expression and equation (20) or (21) of [5] follows from the substitution
x = b+ z = (a/2) + z. If the heating rate is independent of time, and F = 0, (87) becomes

el [+ - ST Ponl )

which corresponds to equation (3) on p. 112 in [4]. These one-dimensional solutions, (86), (87) and
(88), couid have been obtained directly from the general solution (22.b) along with the use of (10),
(16), (19) and (20).

A further example which has been treated in [8] in connection with the heating of semiconductor
devices is the one-dimensional unsteady temperature distribution in a thin, thermally insulated disk
initially at zero temperature and suddenly heated by a heat source of uniform volume density in a
circular area at the center. The solution given as the combination of equations (5) and (6) of [8] is
not very suitable for purposes of numerical evaluation. This is due to the presence of the factor,
[l — exp (—7A%)], in the series summation, which introduces the poor convergence. The solution to
this problem expressed in a more suitable form can be readily obtained from the general expression
(38.b). Indeed, letting F=fi =fs =f3 =0, and Q = Qo[H(r) — H(r — na)] in (38.b), where
H(x) is the Heaviside unit step function and na (0 < n < 1) is the radius of the circle in which the
constant heat source Qg is acting, yields the expression

T(r, ) = 2u(0) + Tootr) — 2 Dty Z Al '}‘?3:2;" ) e, (89)

after evaluating the integral _| Jo(pmr) r dr. From (37.a) and the above-mentioned expression for Q,
it follows that

2o(t) = %n‘zxt. (90)
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Using this value of 2¢(¢), Too(r) is readily determined from the one-dimensionalized version of (39),

(40) and (41) as
g Il o
R

- I*)-l _(,,-z S ) <<
L 7= 1n +r zts57 *'2"”, 1sos L

The expression (89) used in combination with (90) and (91) constitutes the solution, and pna is the
mth positive root of Ji{pma) = 0. Withj = 0, it follows from (21) specialized for the one-dimensional
case in r, that

1 r2 1 r ]
) -0 (G o). 0fen]
H L @ 2 a="| Juman) Jolpmr)

1 1y (@ ()3 r - ¢ (k) T (kma)
e () e (G rar=3)) nsis |

™

e
SV
Toolr) = ‘>.

oD

0<r<a(92)

The equivalence of the present solution given by (89) and that given by the combination of (5) and
(6) of [8] follows from the summation formula (92). The difference between the two solutions lies in
the fact that, (89) utilizes the left-hand side of (92), an expression in closed-form, whereas the
combination of (5) and (6) of [8] utilizes the right-hand side of (92) which is a slowly converging
series expression.

Lastly, a set of two one-dimensional problems, one for the cylinder and the other for the slab is
considered and numerical results are presented in the form of charts, Consider a cylinder insulated at
the faces z = -+b and subjected at the surface r = a to a heat flux proportional to time, the initial
temperature and internal heat source being zero. In this case fa(g, z, £) = fat in (37) and (84) which

yield, respectively,
__f 3ad®

faad® (2 1\ &t
T03(r’ t): 2K« (5—2*2) '0_'2'

Furthermore, F = fi = fz = Q = 0 and f3(p, z, t) = f3t in (38.b) which becomes

-} ¢
ol — 2
T(r, 1) = Qs(t) + Toalr, 1) — f;f J:((: ,,.3 el (fma;;‘ n') J. exp (xu2,7) dr.

M=1 i}

Performing the indicated integration in the above expression and making use of the summation

formula
1 /r2 1174 1 < Jo{imr) i
P\ 24473 = T (AT <r<a,
( ' ) Z Jo(uma) (pma)*’ O<r<a ©3)

m=1

one obtains

«\E (2 1y okt 12 1] S Jo(umr) exp (—upxt)
(e a3) e = ) +2(E) mwl@Emaas) 2 D o T,
m=1 (94)
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where upma is the m'™ positive root of J1(uma) = 0. For large values of ¢ the infinite series part of (94)
becomes vanishingly small and the first three groups of terms of (94) correspond to the quasi-steady
value of T(r,t). Using the tables of Bessel functions given in [9] and the roots of Ji(uma) =0
tabulated in {2], the sum of the third group of terms and the infinite series appearing on the right-
hand side of (94) has been numerically evaluated. These results are presented graphically in Fig. | for
various values of the Fourier number, («t/a2). in which the ordinates give the values of

K kt\2 1 /r2 1\xt
(7w 70 = (&) =3 (5-2) %

Similarly, the corresponding results are readily obtained for the infinite slab |z| < & with the face
z = b subjected to a heat flux varying linearly with time while the face z = —b& is insulated. Letting
F =0 and fo(t) = fat in (87), carrying out the integration and utilizing the summation formula

i - S (o) wen o
n=1
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F1G. 1. Temperature response charts for the cylinder, Fic. 2. Temperature response charts for the slab, | 2| < b
0 < r < a, based on equation (94). based on equation (96).
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the following expression is obtained:

/

] =3 40+ -l 40 -7

< o 2\ exp(—mle/db?)
2 — _1 - il — _ L
+ 2 ; (=D~ cos 3 (1 +b) () , (96)
n=1

which should be compared with (94). The quasi-steady response is described by the first three groups
of terms appearing on the right-hand side of (96). Graphs of

] 0= i) = [+ 3]

versus (z/b) for various values of the Fourier number, («x/4b2), are presented in Fig. 2.

CONCLUDING REMARKS

The example of the cylinder problem treated here as an application of the general method shows
that heat-conduction problems with boundary conditions of the second kind, no matter how compli-
cated they may be, can be solved directly by use of the expressions (22), provided that the eigenvalue
problem defined by (10) is solvable. The method does not require the use of Duhamel’s Super-
position Theorem and is not restricted to any particular form of the geometry of region. The usual
method of treating conductive heat-transfer problems with boundary conditions of the second kind
is the Laplace transform technique. Especially in the case of complicated problems, the difficulties
inherent in and the excessive amount of labor required for the Laplace inversion procedure are well-
known. This is one feature of the Laplace transform technique that prohibits its practical application
to general problems. Another limitation of this technique is the fact that it necessitates that the
geometry of the region be given in advance, thus making it impossible to obtain a generalized and
unified treatment with respect to geometry. The present method eliminates these difficulties an
supplies the solution directly.

Finally, it is worthwhile to note that (22.b) could have been expressed in the form of

T(P,t) = Ti J F(P)dV+EKI—/Jt- [ J OP, 7)dV + ﬁ Jﬁ(si, 7) d&] dr

S

€0

+ > Cnbm(Prexp (- ~A=:;lr>{ qum(f’) F(PydV +

tx | e [ [ amero@ nav+ > [ buti s s or), ©7)

in which the pseudo-steady functions Tos(P, t) do not appear. Although (97) is simpler than (22), the
infinite series part of it does not converge uniformly but only in the Fourier sense. To illustrate this
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point further, consider the simple problem, the solution to which is expressed by (87). Direct
application of (97) to this problem gives the result

S 0
« K ) hm z 5 o Kt
T(Z,t)=F+2—b“I~(J\j:3(T)dT+Eb— (""I)”COS"‘Z"(l'f"B') exp (—ﬂz‘ﬂ' Z—b~§)
n=1

0
J exp ( non? %‘3) fol) d. (98)
0

This should be compared with (87). The expression (98) corresponds to equation (8) of {6}, except for
the sign of the first term which has been corrected and expressed by equation (16) of [7].

It is interesting to note that the summations _‘;_: appearing in (54), (55.b), (62), (76), (84) and

k=1
(85.b) can be expressed in closed form by means of the following summation formula:

> () =2 i -2 (et 3]

Thus, for example, (85.b) becomes

2 1 27 2r s
Ta,7.0 = g (3= 3) | A0 0dn = 55 [ A om [1=2 () costr— 0+ (5) ] o
0 0 . (99)

However, the resulting integrals are, in general, more complicated to evaluate,
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Résumé—Des expressions générales sont obtenues pour des distributions de températures transitoires
dans des régions finies de géométrie arbitraire, sous des conditions de flux de chaleur imposé sur
toutes les frontiéres et avec des sources de chaleur dépendant du temps et des conditions initiales
arbitraires. Les sources (ou les puits) de chaleur sont distribuées dans I'espace et peuvent comme cas
particuliers, étre des sources surfaciques, linéiques ou ponctuelles. En introduisant en plus certaines
fonctions de source de chaleur fictives, des solutions pseudo-permanentes correspondantes sont
définies, au moyen desquelles les champs de température sont exprimés sous forme de solutions en
série uniformément convergentes. La méthode générale de solution est appliquée 3 une étude détaillée
d'un probléme de cylindre fini de nautre trés générale, qui n’a pas été traité auparavant.
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L'étude actuelle constitue un complément d’un article antérieur dans lequel on fait 'hypothése de
"existence de solutions permanentes lorsque les fonctions de source volumique et surfacique imposées
sont indépendantes du temps.

Zusammenfassung—Fir instationire Temperaturverteilungen in endlichen Bereichen beliebiger
Geometrie werden allgemeine Ausdriicke abgeleitet unter der Bedingung einer vorgeschriebenen
Wirmestromdichte an allen Abgrenzungen und mit zeitabhidngigen Wirmequellen und beliebigen
Anfangszustinden. Die Wirmequellen (oder Senken) sind iiber das ganze Volumen verteilt und
kénnen, wie in speziellen Fillen, Flichen-, Linien- oder Punktquellen sein.

Durch Einfithren bestimmter kiinstlicher zusitzlicher Funktionen flr die Warmequellen werden
entsprechende pseudo-stationdre Losungen definiert, mit deren Hilfe die Temperaturfelder in Form
von gleichférmig konvergenten Reihenldsungen ausgedriickt werden. Die aligemeine Losungsmethode
wird auf eine eingehende Studie eines endlichen Zylinderproblems ziemlich allgemeiner Natur, welches
bisher nicht behandelt worden ist, angewandt. Die vorliegende Arbeit erginzt nachtriglich einen
fritheren Aufsatz, in dem die Annahme gemacht wurde, dass stationidre LOsungen existieren, wenn

vorgeschriebene Funktionen fiir Volumen- und Flichenquellen zeitenabhingig sind.

AHHOTALHA— BBIBeXeHBl O0U(Ie BBIpaWKEHIIA [JIA HECTALHOHAPHOrO pACMpeIeIeHHA TeM-
nepaTypsl B KOHEUHBIX 00.JaCTAX MPOH3BOJILHOI TEOMETPHIl NPH 33JAHHOM TEMI0BOM OOTOKE
Ha BCeX IpaHiiax, HCTOYHIKAX Ter1a, 3aBUCAIIHX OT BpeMEHH, i IPON3BOIbHBIX HAYATBHBIX
veaoBuAX. HeTouHHKI (MU CTOKM) TenmIa pacnpeleseHsl 0 BceMy 0OBEMY I MOTYT ObITh, B
YACTHOCTH, IMOBEPXHOCTHBIMIU, JTHHEHHBIMIL HJIH TOUEUHBIMIL.

ITytem BBelenuA (YHKUIN, ONNCHIBAUIIX HEKOTOPbIE UCKYCCTBEHHBIE IOMO.IHHTEIbHbIE
HCTOYHILKI, ONPeIedAlTCA COOTBETCTBYIOILIE NCeBIOCTALIMOHAPHBIE PEIUEHIIA, MPH [TOMOLII
HOTOPBHIX TeM{epaTypHble M0JA BHIPAKAWTCA B BUIe DPABHOMEPHO CXOIALUINCA DHAIOB.
OO0wuit MeToI pelieHHA NPHMEHeH K JeTaIbHOMY H3YYEeHHIO 3aJa4il B KOHEYHOM WUHJIMHIpE
oveHb 0OWIEro XapakTepa, KOTOPaA paHee He PacCMaTpHBajIach.

Hacroswana padora 3aBepliaer I JOMOJHAET MpPeIblIVILYI CTAaTbio, B KOTOPOIt 1eaaIoch
JONVILEHHe O CYIECTBOBAHIH CTAUIMOHAPHBIX peleHIl Npi 3aJaHHBIX OOBEMHBIX M IT0-

BEPXHOCTHBIX JICTOUHHKAX He 3aBHCALIMX OT BPEMEHI!.



